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B ESM-1b transformer
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Rives A et al. Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences [J].
Proceedings of the National Academy of Sciences, 2021, 118(15): €2016239118. (AR G| F&: 1188)



Shorthand

esm.pretrained.

#layers

#params

Dataset

Embedding
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https://github.com/facebookresearch/esm
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(1) Protein structure prediction

ESMFold (Science, 2023)

AlphaFold2 (Nature, 2022)

(2) Protein function prediction
ATGO. NetGO 3.0, HEAL

(3) Protein-ligand binding site prediction
ULDNA. GraphSites NABind

Dim
R
ESM-1 esml_t34_670M_UR50S 34 670M v 50/8 1280
2018 03
UR50/D
1 _t34_670M_UR50D 34 670M 1280
esm=_tea_o/u- 2018_03
1 t34 _670M_UR100 34 670M UR100 1280
esme_toa_o/u- 2018_03
UR50/S
esml_t12_85M_UR50S 12 85M 768
2018_03
UR50/S
1 t6_43M_UR50S 6 43M 768
esme_toAst- 2018_03
UR50/S
ESM-1b 1b_t33_650M_URS 33 M 128
S esmlb_t33_650M_UR50S 650 2018 03 0
UR50/D
ESM-2 2 t48_15B_UR50D 48 158 12
S esm2_t48_15B_UR50 5 2021 04 5120
* UR50/D
2 _t36_3B_UR50D 3 3B 2
esm2_t36_3B_ 6 202104 560
UR50/D
esm2_t33_650M_UR50D 33 650M 1280
202104
UR50/D
2 _t30_150M_UR50D 30 150M 640
esme_teb Lot 2021_04
2 _t12 35M_UR50D 12 35M URSO/D 480
esme_tLesot 2021_04
esm2_té6_8M_UR50D 6 8M URSO/D 320

2021_04
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Text S1. The mathematics formulas for ESM-1b transformer
A. Masking

For an input sequence, the masking strategy [12] is performed on the corresponding
tokens (i.e., amino acids). Specifically, we randomly sample 15% tokens, each of which
is changed as a special “masking” token with 80% probability, a randomly-chosen
alternate amino acid with 10% probability, and the original input token (i.e., no change)
with 10% probability.
B. One-hot encoding

The masked sequence is represented as a L X 28 matrix using one-hot encoding
[13], where 28 is the types of tokens, including 20 common amino acids, 6 non-common
amino acids (B, J, O, U, X and Z), 1 gap token, and 1 “masking” token.
C. Embedding with positions

The one-hot coding matrix X of the masked sequence is multiplied by an

embedding weight matrix Wy to generate an embedding matrix Hp:
Hp = XWg, X € RY28, W, € R?8%P H, € RLXP (S1)

where L is the length of the masked sequence, 28 is the types of tokens in the masked
sequence, and D is the embedding dimension.

Then, the position embedding strategy is used to record to position of each token in
the masked sequence to generate a position embedding matrix Hp:

hy

Hp = hf hy = (i1, V2, vip), Hp € R¥P and h; € RP (S2)

hy,
Vizk = SN (Goomi7p)s Vizks1 = €08 (possierp)s K =0, 1, .., D —1)/2  (S3)
where h; is the embedding vector for the i-th position in the masked sequence.
Finally, two embedding matrices are added as a combination embedding matrix H;:
H, = Hy + Hp, H, € RL*P (S4)
D. Self-attention
The embedding matrix H, is fed to self-attention block with n layers, each of

which consists of m attention heads, a linear unit, and a feed-forward network (FFN).

In each attention head, the scale dot-product attention is performed as follows:

T
Ay j = softmax(MEME /[d;)) MY; (S5)

M3 = HWS, MY = HWE, M}, = HWY (S6)

0o Mij ijr

dyj =D/m, WS, WK W), € RPXGR), ME, ME M, A€ RMG S7)

where A;; is the attention matrix in the (i-th layer, j-thhead), Mi?j, M,-’fj, and Ml!,’ j are
Query, Key, and Value matrices in the (i-th layer, j-th head), H; is the input matrix in
the i-th layer, WL?, Wf‘;, and WIVJ are weight matrices, and d;; is the scale parameter.

The outputs of all attention heads in i-th layer are concatenated as a new matrix 4;,
which is further fed to a linear unit to output the matrix U, :

Ai=AipAi A (S8)
Uy = AW2 + b}, W} € RP*®, A, b, U; € REP (9)
where W;' and b} are the weight matrix and bias, respectively, in the linear unit.
E. Feed-forward network with shortcut connections

The U; is added by H; to generate a new matrix F;, which is further fed to the FFN
to output the matrix T;:

Fi= Hi+ Ui (SlO)
T, = gelu(F,-Wiz + biz)VVi3 + b?, Wiz, Wi3 € RPXD, biz, bf,Ti € RLXD (S11)
gelu(x) = x@(x) (S12)
where W? and W} are weight matrices in the FFN, b? and b? are bias in the FFN,
and @(x) is the integral of Gaussian Distribution for x
The F; isadded by T; as the output the i-th attention layer:
Hiy1= F+ T;, Hiyq € RVP (S13)
The output of the last attention layer is fed to a fully connected layer with SoftMax
function to generate a L X 28 probability matrix:

P = SoftMax(H™W™ + b™), P € RLx28 (S14)
where the (I-th, c-th) value in P indicates the probability that the [-th token in the
masked sequence is predicted as the c-th type of amino acid, W™ and b™ are weight
matrix and bias, respectively.

F. Loss function

The loss function is designed as:

logP,,
Lossesm = Ex-x Elex(M) ("' Ix(ﬁ;)(ll)) (S15)

where x is a sequence in training protein set X, x(M) is a set of masking position in

https://viheng-zhu.github.10/Yiheng/papers5.html
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B ProtTrans Token-level
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Elnaggar A et al. Prottrans: Toward understanding the language of life through self-supervised learning[J]. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2021, 44(10): 7112-7127. (B-#kFA G| F&: 794)
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https://github.com/agemagician/ProtTrans

= Models Availability

Model

*ProtT5—XL—UniRef50 (also ProtT5-XL-U50)

ProtT5-XL-BFD
ProtT5-XXL-UniRef50
ProtT5-XXL-BFD
ProtBert-BFD
ProtBert

ProtAlbert

ProtXLNet

ProtElectra-Generator-BFD

ProtElectra-Discriminator-BFD
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(1) SeqVec (Heinzinger M et al, BMC Bioinformatics, 2019, 5| Fj&: 387)

Hugging Face
Download
Download
Download
Download
Download
Download
Download
Download
Download

Download

Zenodo

Download
Download
Download
Download
Download
Download
Download
Download
Download

Download

ul Use-cases

Level

Protein

Residue

Residue

Protein

Residue

Type

Function

Function

Function

Structure

Structure

Tool

Light
Attention

bindEmbed21

VESPA

ProtTucker

ProtThdst

Task

Subcellular
localization

Binding Residues

Conservation &
effect of Single
Amino Acid

Variants (SAVSs)

Protein 3D
structure
similarity
prediction

Protein 3D
structure
prediction

Manuscript

Light attention predicts

protein location from the

language of life

Protein embeddings and

deep learning predict

binding residues for various

ligand classes

Embeddings from protein

language models predict

conservation and variant
effects

Contrastive learning on
protein embeddings
enlightens midnight zone at
lightning speed

Protein language model
embeddings for fast,
accurate, alignment-free
protein structure prediction

(2) TAPE (Rao R et al. Advances in Neural Information Processing Systems, 2019, 5| Fj&: 633)
(3) Bepler & Berger’s approach (Tristan Bepler et al, ICLR, 2019,5] Fj&: 278)
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B ESM-MSA transformer
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Rao R M et al. MSA transformer[C]//International Conference on Machine Learning. PMLR, 2021: 8844-8856. (AW A 5| F&: 339)
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ESM UR50/S +
* MSA-1b esm_msalb_t12_100M_UR50S 12 100M MSA 768
2018_03

> N iFES5 R H

(1) Protein contact prediction (single chain)

(2) Protein complex contact prediction (two chains)
Deeplnter (Nature Machine Intelligence, 2023)
ICCPred (Computers in Biology and Medicine, 2023)


https://github.com/facebookresearch/esm

Text S1. The mathematics formulas for ESM-MSA transformer

1. Masking

For an input multiple sequence alignment (MSA), the masking strategy is performed.
Specifically, for each individual sequence in MSA, we randomly sample 15% tokens
(amino acids), each of which is changed as a special “masking” token with 80%
probability, a randomly-chosen alternate amino acid with 10% probability, and the

original input token (i.e., no change) with 10% probability.

2. One-hot encoding

The masked MSA is encoded as three matrices using one-hot encoding from three
different views. Specifically, for the j-th position of the i-th sequence in the masked
MSA, we encode it as three one-hot vectors, i.e., X;j, ¥;j, and Z;;, from the views of

token type, row position, and column position, respectively.

1, k=g¢;
Xij = (x[jl,xm, ...,xijcmax) € Rcmux‘ Xijk = {0 k+ C:j [€))]
1, k=i
Yij = (Vij Yijzr - VijMimar) € R, ¥y = {0 k#i G
1, k=j
2y = (2ij1 Zij2r w1 Zijiomg,) € REMe%, 2y = [0 k#j ®)

where c;; is the index of token type for the j-th position of the i-th sequence, Cpqx
is the number of types of tokens, L, and M,,,, are preset maximum values for
sequence length and alignments, respectively. In this work, C,,4, = 28 and Lp,q, =
Mpar = 1024, where 28 types of tokens include 20 common amino acids, 6 non-
common amino acids (B, J, O, U, X and Z), 1 gap token, and 1 “masking” token.

According to Egs. 1-3, the masked MSA can be encoded as three matrices, i.e., X,
Y and Z, through one-hot encoding from the view of token type, row position, and
column position, respectively, where X € RMXLXCmax Yy € RMXLXMmax and Z €
RM*LXLmax M is the number of alignments, and L is the length of individual
sequence in the masked MSA.

3. Initial embedding
Each one-hot coding matrix is multiplied by a weight matrix to generate the

corresponding embedding matrix:

[ X[1]] X[1]W oken

Hooken = XWepien = | X2 | Wippen = [ X(2IWreoken | & gz (g
x[m1, (MW e
X[i] € R¥*Cmax, W, 1on € REmax*P
Y[ Y[1]W,y,
Hoo =W = |V (i | YW | i )
[y[m] Y[MIW,,,,

Y[i] € RV*Mmax, W, € RMmaxxD

-Z[l] | Z[l]wcol
Heoy =2ZWeo = Z[Z] Weo = Z[Z]"ITVCOl € RMxtxD ©)
LZ[M]] Z[M]W o1

Z[i] € RV*bmax, W ., € RlmaxD

where X[i], ¥[i] and Z[i] are the one-hot coding matrices for the i-th sequence in
the masked MSA from the view of token type, row position, and column position,
respectively, Hioxen, Hrow, and H,, are token type-based, row position-based, and
column position-based embedding matrices for the masked MSA, respectively, and D
is the embedding dimension. In this work, D = 768.

Three embedding matrices are added as an initial embedding matrix H,;:

Him't = Htoken + Hrow + Hcol'Hinit € RMXLXD (7)

4. Batch normalization and dropout
The initial embedding matrix H;,;, is fed to the batch normalization layer to generate

the corresponding normalized matrix H;:

BN(hn) BN(.hu)
H, = BN(H;n;t) = : : (®)
BN(hy1) -+ BN(hwm)
BN(hy) =y - "= + B, h;; € R o)
oijte

where h;; is the initial embedding vector for the j-th position of the i-th sequence in

the masked MSA, u;; and ai";- are mean and variance for h;;, respectively, and y, B,

ijs
and € are normalized factors.

The normalized matrix H, is fed to dropout layer:

https://Viheng—zhu.github.io/\i'iheng/paperSS .html
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Comparison to related works Protein Contact Prediction (Single Chain)
Task Unsupervised contact prediction Structure Prediction
Test set Large CASP14 CAMEO (Apr-Jun CASP14 CAMEO (Apr-Jun
valid 2022) 2022)

Gremlin (Potts) 39.3

TAPE 11.2

ProtBert-BFD 341

Prot-T5-XL-BFD 35.6 461 62.6
’:;;;’TS'XL'WSO 479 49.8 69.4

ESM-1 337

ESM-1b 411 24.4 39 41.6 64.5

ESM-1v 35.3

ESM-MSA-1b 57.4

ESM-2 (8M) 15.9 9.8 15.7 36.7 481

ESM-2 (35M) 28.8 16.4 28.4 41.4 56.4

ESM-2 (150M) 42.2 26.8 40.1 49.0 64.9

ESM-2 (700M) 50.1 325 47.6 51.3 701

ESM-2 (3B) 52.7 34.0 49.9 52.5 71.8

ESM-2 (15B) 545 370 51.7 554 721

https://eithub.com/facebookresearch/esm
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Task/Model
Subcell. loc.
(setDeepLoc)

Subcell. loc.
(setHard)

Conservation
(ConSurf-DB)

Variant effect (DMS-
data)

Variant effect (DMS-
data)

CATH superfamily
(unsup.)

CATH superfamily
(sup.)

Binding residues

ProtBERT-
BFD

80

58

0.540

18

39

ProtT5-XL-
Us0

86

65

0.596

0.563

0.53

64

76

39

ESM-
1b

83

62

0.563

57

70

32

ESM-
1v

0.49

0.53

https://github.com/agemagician/ProtTrans

Metric

Accuracy

Accuracy

MCC

Spearman
(Mean)

Spearman
(Median)

Accuracy

Accuracy

F1
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Protein Function Prediction (GO Prediction)

Performance comparison between ESM-1b and ESM2 on the test dataset of ATGO paper

Fmax AUPR
MF BP CC MF BP CC
One-hot 0.371 0.321 0.560 0.321 0.237 0.572
ESM-1b  0.627 0.425 0.623 0.603 0.361 0.600
ESM2 0.644 0.431 0.630 0.613 0.365 0.605

Method
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— Voting for the presidential election has begun

— The Red Sox defeated the Yankees at Fenway
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d
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5
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Madani A, Krause B, Greene E R, et al. Large language models generate functional protein sequences across diverse
families[J]. Nature Biotechnology, 2023: 1-8. (A kAR G| FH&E: 178)
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> AR AR S 2 ik https://github.com/salesforce/progen/tree/main/progen?

> FEERNH: de novo protein design  Models

Model Size Checkpoint
https://storage.googleapis.com/sfr-progen-research/checkpoints/progen2-
progen2-small 151M
small.tar.gz
progen2- 6 https://storage.googleapis.com/sfr-progen-research/checkpoints/progen2-
medium medium.tar.gz
https://storage.googleapis.com/sfr-progen-research/checkpoints/progen2-
progen2-oas 764M
oas.tar.gz
https://storage.googleapis.com/sfr-progen-research/checkpoints/progen2-
progen2-base 764M
base.tar.gz
https://storage.googleapis.com/sfr-progen-research/checkpoints/progen2-
progen2-large 2.7B
large.tar.gz
progen2- ) 78 https://storage.googleapis.com/sfr-progen-research/checkpoints/progen2-
BFD90 ) BFD90.tar.gz

https://storage.googleapis.com/sfr-progen-research/checkpoints/progen2-
xlarge.tar.gz

progen2-xlarge 6.4B

> HAEHFRFH A SAER . ProtGPT2

Ferruz N, Schmidt S, Hocker B. ProtGPT?2 is a deep unsupervised language model for protein design [J]. Nature Communications,

2022, 13(1): 4348. (AHkZEA D] Fl&: 153)
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B Genomic Pre-trained Network (GPN)

> ARG FIRBLAY T i bk

Output:
masked
nucleotide
probabilities

https://github.com/songlab-cal/gpn (GPN, GPN-MSA) - ntextual

> PSS
(1) Variant effect prediction
(2) RNA modification prediction
(3) Gene function prediction (???7?)
[1] Benegas G et al. DNA language models are powerful

predictors of genome-wide variant effects [J]. Proceedings of the
National Academy of Sciences, 2023, 120(44): €2311219120.

[2] Benegas G et al. GPN-MSA: an alignment-based DNA
language model for genome-wide variant effect prediction [J].

bioRxiv, 2023.

embedding
(D=512)

Masked input

Input: DNA
(L=512)

P(A)
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G473
G129
G403
G032

G420
G480

(—V

(B ARG E: 16619)

G498

G488
G368
G324
G362

Genetlc —p
database
search

L» Structure |

database
search

G253
G216

AlphaFold Experiment
r.m.s.d.gs = 0.8 A; TM-score = 0.93

@'I'T'H t

1Tt
SIS AL _Q_’
@HH r

ﬂ

Templates

t—i)o

©

R

)
ok o
MSA
representation =9
(s,rse)
Evoformer
(48 blocks)
o
Pair
representation —p-
(r.re)
|
—

AlphaFold Experiment
r.m.s.d. = 0.59 A within 8 A of Zn

TPTLITY )
@
Single repr. (nc)] —>-
s
D
~J
Structure
module
(8 blocks)
o R 6 4
Pair
—_— representation | s
(r.rc)
|
—)

| |

AlphaFold Experiment
r.m.s.d.gs = 2.2 A; TM-score = 0.96

High
confidence
Low
confidence

3D structure

<« Recycling (three times)

AlphaFold2 f) T{/EHEZE



> AlphaFold2 v 7 fig g i 7] 735

(1) protein-protein complex structure prediction (AlphaFold-Multimer)
Evans R et al. Protein complex prediction with AlphaFold-Multimer [J]. bioRxiv, 2021: 2021.10. 04.463034.
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(2) RNA structure prediction

(3) protein-ligand complex structure prediction
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> 2023 4£ 10 H 31 H, Performance and structural coverage of the
DeepMind 4} 2 T 5 i — & latest, in-development AlphaFold model
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The introduction of AlphaFold 2 (Jumper et al., 2021) has spurred a revolution in modelling the structure
of proteins and their interactions, enabling a huge range of applications in protein modelling and
design (Kreitz et al., 2023; Lim et al., 2023; Mosalaganti et al., 2022). In this note, we report on our
progress on a new iteration of AlphaFold modelling that greatly expands the range of applicability of
the method and is capable of joint structure prediction of complexes including proteins, nucleic acids,
small molecules, ions, and modified residues. The new AlphaFold model demonstrates greatly improved
accuracy over previous specialist tools in the majority of cases: far greater accuracy on protein-ligand
interactions than state of the art docking tools, much higher accuracy on protein-nucleic acid interactions
than specialist predictors like RoseTTA2FoldNA (Baek et al., 2022), and significantly higher antibody-
antigen prediction accuracy than AlphaFold-Multimer (Evans et al., 2021). In this results-only progress
report, we show quantitative benchmarks and highlight a number of specific high-accuracy predictions
on recently solved structures. We believe that these results ultimately point to the achievability of
atomically-accurate structure prediction for the full range of biomolecular interactions across the PDB
within an AlphaFold framework.

JR W43 . https://link.zhihu.com/?target=https%3A//storage.googleapis.com/deepmind-media/DeepMind.com/Blog/a-glimpse-of-the-next-generation-of-
alphafold/alphafold latest oct2023.pdf



https://link.zhihu.com/?target=https%3A//storage.googleapis.com/deepmind-media/DeepMind.com/Blog/a-glimpse-of-the-next-generation-of-alphafold/alphafold_latest_oct2023.pdf
https://link.zhihu.com/?target=https%3A//storage.googleapis.com/deepmind-media/DeepMind.com/Blog/a-glimpse-of-the-next-generation-of-alphafold/alphafold_latest_oct2023.pdf

a Ligands PoseBusters Benchmark
100 -
80
» Uses ground-truth holo protein as template
~ g0 | 1
Vi 52.3
B 51:2
)
=
4
x*
C Nucleic Acids (Low Homology)
100 - :
[ RoseTTAFold2NA :
[ AlphaFold-latest :
80 . Alchemy_RNA2 :
S “74 (*with expert human input)
I 62.9
x
[
a
a
=
5
'_
a
a
-

PDB PDB CASP 15
Protein-RNA Protein-dsDNA RNA LDDT
iLDDT iLDDT N=38

N=25 N =38

(2

% Correct (DockQ > 0.23)

% pocket RMSD < 2 A

100

100

80

Protein-Protein Interfaces (Low Homology)

I AlphaFold 2.3
[ AlphaFold-latest
78.1%

All Protein-Protein
N = 1058

Antibody-Protein
N = 66

Covalent Modifications (Low Homology)

Ligand bonded Glycosylation modified modified
to protein N =164 residue nucleotide
N=74 in protein in nucleic acid
N =42 N =112

Figure 2 | Summary of AlphaFold-latest capabilities and performance. a, Ligand docking performance on
PoseBusters benchmark set. N=428 targets. b, Protein-protein interaction accuracy ¢, Nucleic acid interaction
and RNA accuracy. Nucleic acid LDDT is computed with an inclusion radius (Rg) of 30 A. d, Accuracy on various

covalent modifications.



Figure 2 demonstrates performance in four categories:

(a) AlphaFold-latest outperforms classical systems like AutoDock Vina (Eberhardt et al., 2021; Trott
and Olson, 2009) on the PoseBusters benchmark (Buttenschoen et al., 2023) for ligand docking
despite baselines using ground truth bound protein structures as inputs while AlphaFold-latest
starts from the protein sequences and ligand identities only. See Figure 6 for a range of example
ligand predictions.

(b) It improves upon AlphaFold 2.3 for protein-protein structure prediction, especially in certain
categories such as antibody binding structures.

(c) On protein-nucleic acid interfaces AlphaFold-latest outperforms competing systems (Baek et al.,
2022), while for RNA structure prediction it outperforms automated methods but is slightly
below the top CASP15 entrant which uses manual expert intervention (Alchemy RNA2) (Chen
et al., 2022; Xiong et al., 2021).

(d) Finally, AlphaFold-latest is able to predict the structure of further entities like bonded ligands,

2. Model Inputs and Outputs

AlphaFold-latest takes as input a description of the biological assembly, with sequences for polymers
and SMILES for ligands, and optionally the sequence location of covalently bonded ligands, and
outputs a prediction for the 3D position of each heavy atom. Water and hydrogens are excluded.
All experimental structures used for training the model were from PDB with release dates up to
2021-09-30. Templates were filtered to only those released prior to 2021-09-30.

Inputs are “tokenized” to get model inputs, with one token per standard polymer residue and one
token per heavy atom for ligands and nonstandard polymer residues. The number of tokens is the
primary driver of compute time and limits of prediction sizes on different hardware. We evaluate
system performance on complexes up to 5,120 tokens for computational ease, but the system is
capable of running larger complexes on accelerators with large amounts of memory.

Each output structure comes with per-atom, per-token-pair, and aggregated structure-level confi-
dence measures| In addition, each entity within the structure and each interface between entities
within the structure has an associated confidence measure.



» Performance on protein-ligand structure prediction

Figure 3 | Three AlphaFold-latest examples from the PoseBusters benchmark set where docking programs
Vina and Gold fail to achieve accurate predictions. Surface representation of the predicted protein structure
shown in blue, predicted ligand pose shown as sticks in orange, ground truth ligand pose shown as sticks
in grey. a, PDB ID 7OCB: best docking RMSD = 4.6 A, AlphaFold-latest RMSD = 0.96 A. b, PDB ID 5SD5:
best docking RMSD = 4.5 A, AlphaFold-latest RMSD = 0.92 A. ¢, PDB ID 7BLA: best docking RMSD = 6.3 A,
AlphaFold-latest RMSD = 2.0 A.

RMSD: Root Mean Square Deviation



» Performance on protein-nucleic 100 -
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Figure 9 | Nucleic acid complex performance. a, Performance of AlphaFold-latest at predicting low homology
protein-DNA interfaces, RNA chains, and protein-RNA interfaces from our PDB test set (averages per interface
cluster, split by as many as or more than 1000 total complex residues - amino acids and nucleotides). N refers
to the number of interface clusters. iLDDT used for Protein-DNA and Protein-RNA; LDDT for RNA chains. b,
Performance of AlphaFold-latest vs RoseTTAFold2NA on low homology nucleic acid targets with up to 1000
residues from our PDB test set. N refers to the number of targets, used instead of interface clusters to separate
targets with and without paired DNA. iLDDT used for Protein-DNA; LDDT for RNA chains. Box, center line,
and whiskers boundaries are at (25%, 75%) intervals, median, and (5%, 95%) intervals.
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