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Abstract 

Knowledge of protein functions is crucial to understanding and investigating cellular functions across all 
organisms. Accurate annotations of protein functions are also useful for the elucidation of mechanisms of 
various diseases and can be used to guide target-based drug design efforts. Although biological experiments 
are the most precise way for functional annotation of proteins, they are often time-consuming, laborious, 
and expensive. Therefore, there is an urgent need to develop efficient and accurate computational 
approaches for protein function prediction. This chapter comprehensively reviews and categorizes promi-
nent computational predictors of protein functions, which are defined by the Gene Ontology (GO) terms, 
including template detection-based methods, statistical machine learning-based methods, deep learning-
based methods, and composition methods. Applications of those protein function prediction methods are 
also discussed. 
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1 Introduction 

Proteins perform various cellular functions including catalyzing 
biochemical reactions, transporting substances, transmitting sig-
nals, regulating metabolism, and providing immune protection 
[1]. Accurate annotation of protein functions is critical to reveal 
molecular-level details of these functions and elucidate mechanisms 
underlying diseases, thereby guiding targeted drug design [2, 3]. In 
view of this, protein function annotation has become one of the 
primary tasks in the post-genomic era [4]. 

In the early research, protein functions were mainly annotated 
via experimental methods [5]. Although these methods are the 
most precise way for function annotation, they tend to be time-
consuming, laborious, and expensive, leading to relatively slow 
growth of the functionally annotated protein data. In stark
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contrast, protein sequences are produced at a very high pace, 
leading to their rapid accumulation in public databases. Figure 1 
shows the corresponding growth trends over the past decade in the 
total number of sequences and the number of sequences with 
experimental function annotations in the UniProt protein database 
[6]. As of January 2024, the UniProt database provided access to 
252 million protein sequences, yet fewer than 0.1% of them had 
function annotations. To fill this gap, it is urgent to develop effi-
cient computational methods to rapidly and accurately predict 
functions from sequences.
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Fig. 1 The growth trends over the past decade in the total number of sequences and the number of sequences 
with biological-experimental function annotations in the UniProt database 

Recently, a large number of computational methods have 
emerged for protein function prediction [7–9]. These methods 
typically rely on knowledge-based models that are trained/gener-
ated from the protein data with known functions and which can be 
subsequently used to infer the functions directly from sequences of 
proteins. Development of these tools is cross-disciplinary including 
computer science, statistics, and molecular biology. The current 
function prediction methods could be roughly divided into three 
categories including template detection-based, machine learning-
based, and composition methods. This chapter presents a compre-
hensive review of representative methods across the three 
categories. 

2 Protein Function Annotation Database 

2.1 Gene Ontology The protein functions are mainly annotated by Gene Ontology 
(GO) [10], which is an important bioinformatics initiative that 
standardizes the representation of attributes for genes and gene 
products (e.g., proteins and RNA molecules) across all species. 
For a given target protein, the corresponding functions are divided 
into three aspects using GO annotations, including molecular



function (MF), biological process (BP), and cellular component 
(CC) [11]. MF describes the elemental activities of proteins at the 
molecular level, such as ligand-binding and catalysis. BP refers to 
the complete biological process accomplished by several molecular 
activities in which proteins participate, such as signal transduction 
and metabolism. CC captures the subcellular location where the 
proteins are active, such as the cell nucleus and mitochondria. 
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Fig. 2 The function annotations of ammonium transporter Rh type B protein (UniProt ID: Q9H310) in three GO 
aspects 

Figure 2 illustrates the function annotations in three GO 
aspects for the human ammonium transporter Rh type B protein 
(UniProt ID: Q9H310) [12]. In each aspect, the functions of this 
protein are represented as a directed acyclic graph, where nodes 
denote GO terms and edges indicate the parent-child relationship 
between GO terms. Protein function prediction methods aim to 
accurately predict the GO terms with the corresponding parent-
child relationship from the protein sequences. 

2.2 Gene Ontology 

Annotation Databases 

Gene Ontology Annotation (GOA) database (https://www.ebi.ac. 
uk/GOA/)  [13] is the most commonly used function annotation 
database, which was established by the European Bioinformatics 
Institute (EMBL-EBI) in 2004. This database provides high-
quality functional annotations (i.e., GO annotations) for proteins 
from the UniProt database, RNA molecules from the RNACentral 
database [14], and protein complexes from the Complex Portal 
database [15]. Each record in GOA consists of the name or identi-
fier of protein/RNA/complex, reference database, GO aspect, GO 
terms, annotation date, and annotation method. Among these, 
eight annotation methods derived from biological experiments are 
considered as gold standard, including inference from experiment 
(EXP), inference from direct assay (IDA), inference from physical

https://www.ebi.ac.uk/GOA/
https://www.ebi.ac.uk/GOA/


interaction (IPI), inference from mutant phenotype (IMP), infer-
ence from genetic interaction (IGI), inference from expression 
pattern (IEP), traceable author statement (TAS), and inference by 
curator (IC). As of January 2024, the GOA database contains 
133.7 thousand protein sequences with experimental GO annota-
tions. There are also several other protein function databases 
including InterPro [16], Reactome [17], KEGG [18], and 
BRENDA [19]. 
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3 Computational Methods for Protein Function Prediction 

Since 2010, much progress has been made in the protein function 
prediction field, primarily driven by the Critical Assessment of 
Functional Annotation (CAFA) challenges [20]. CAFA is a global 
competition that evaluates function predictors, which is held every 
3 years. CAFA provides a fair and objective competition platform, 
attracting numerous experts to develop a series of efficient function 
prediction methods. These methods could be categorized into the 
three groups that we discuss in the following subsections. 

3.1 Template 

Detection-Based 

Methods 

In the early stages of the protein function prediction field, template 
detection-based methods were predominant [21, 22]. The founda-
tional principle for these methods is that if two proteins show 
similarity in certain biological attributes (such as sequence and 
structure), they are likely to perform similar functions. The key 
principles of the template detection-based methods are as follows. 
For a given query protein, they identify the corresponding func-
tional templates from a public database that share similar biological 
attributes; these templates are then used to infer the biological 
functions of the query protein. According to the employed 
biological attributes, the template detection-based methods could 
be roughly divided into five categories, including sequence 
alignment-based, structure alignment-based, interaction network-
based, family transference-based, and multi-attribute fusion-based 
methods, with the details in Table 1. 

Sequence alignment-based methods utilize sequence align-
ment tools, such as PSI-BLAST [38] and HHblits [39], to measure 
the sequence similarity between proteins, which is further used as 
the metric to select functional templates. The representative exam-
ples include Gotcha [23], Blast2GO [24], and GoFDR [25], where 
GoFDR was ranked as 4, 2, and 2 at the MF, BP, and CC predic-
tions, respectively, in the second CAFA competition 
(CAFA2) [40]. 

Structure alignment-based methods use structure alignment 
tools, such as TM-align [41] and DALI [42], to quantify the 
similarity of three-dimensional structures between query and can-
didate proteins to select templates. If the structure of the query is



unavailable, then the structure prediction tools, such as AlphaFold2 
[43] and I-TASSER [44], are utilized to predict the corresponding 
structure from the sequence. There are several representative exam-
ples including ProFunc [26], FINDSITE [27], and 
COFACTOR [28]. 
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Table 1 
Summary of 16 state-of-the-art template detection-based methods for protein function prediction 

Type Method Refa Year Availability 

Sequence alignment Gotcha [23] 2004 NAb 

Blast2GO [24] 2005 NA 
GoFDR [25] 2017 NA 

Structure alignment ProFunc [26] 2005 NA 
FINDSITE [27] 2009 NA 
COFACTOR [28] 2012 https://zhanggroup.org/COFACTOR/ 

Interaction network Letovsky’s 
method 

[29] 2003 NA 

Vazquez’s method [30] 2003 NA 
Chua’s method [31] 2004 NA 

Family transference MultiPfam2GO [32] 2008 NA 
dcGO [33] 2013 https://supfam.org/SUPERFAMILY/ 

dcGO/ 
FunFams [34] 2015 http://www.cathdb.info/search/by_sequence 

Multi-attribute 
fusion 

MS-kNN [35] 2013 NA 

INGA [36] 2015 http://protein.bio.unipd.it/inga 
MetaGO [37] 2018 https://zhanggroup.org/MetaGO/ 
QAUST [21] 2021 http://www.cbrc.kaust.edu.sa/qaust/submit 

a Ref reference 
b NA not available 

Interaction network-based methods search for proteins that 
interact with the query protein based on the protein–protein inter-
action network databases (e.g., STRING [45] and PrePPI [46]), 
and use them as templates. Some of the key examples are Letovsky’s 
method [29], Vazquez’s method [30], and Chua’s method [31]. 

Family transference-based methods integrate the hidden Mar-
kov models [47] with multiple sequence alignments to inter the 
family of a given query protein, and functions of this protein family 
are transferred into the query. A few illustrative methods in this 
category include MultiPfam2GO [32], dcGO [33], and FunFams 
[34], where FunFams achieved the third rank overall at the predic-
tions of three GO aspects in the fourth CAFA competition 
(CAFA4) [48]. 

Multi-attribute fusion-based methods first design function pre-
diction sub-methods using different biological attributes and the 
function predictions are derived by fusing their predictions

https://zhanggroup.org/COFACTOR/
https://supfam.org/SUPERFAMILY/dcGO/
https://supfam.org/SUPERFAMILY/dcGO/
http://www.cathdb.info/search/by_sequence
http://protein.bio.unipd.it/inga
https://zhanggroup.org/MetaGO/
http://www.cbrc.kaust.edu.sa/qaust/submit


together. For instance, the INGA method [36] was ranked 5, 3, 
and 2 for the MF, BP, and CC predictions, respectively, in the third 
CAFA competition (CAFA3) [20], combining results of three 
sub-methods that rely on the sequence similarity, structural domain 
similarity, and interaction network. Other example methods in this 
category are MS-kNN [35], MetaGO [37], and QAUST [21]. 
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We note an inevitable drawback for the template detection-
based methods, the fact that their prediction performance highly 
depends on the availability and quality of the functional templates. 
If the templates with high quality are unavailable, the 
corresponding prediction accuracy would significantly decline. 

3.2 Machine 

Learning-Based 

Methods 

To overcome the drawbacks of the template detection-based meth-
ods, machine learning algorithms are used as an alternative to 
develop protein function prediction methods [49]. These methods 
aim to encode proteins as feature vectors or matrices from 
biological views, which are processed with machine learning algo-
rithms to train function prediction models. Machine learning-based 
methods could be further divided into two groups that we discuss 
in the following two subsections. 

3.2.1 Statistical Machine 

Learning-Based Methods 

For earlier predictors, researchers manually designed feature repre-
sentations for proteins, such as position-specific scoring matrices, 
physicochemical property vectors, and secondary structure matri-
ces, which are then combined with statistical machine learning 
algorithms (e.g., support vector machines [50] and Bayesian esti-
mation [51]) to implement function prediction models. Represen-
tative examples include CHUGO [52], Lee’s method [53], FFPred 
[54], GOPred [55], Jeong’s method [56], TMEC [57], 
HMC-LMLP [58], GOLabeler [59], and MLC [60], where 
GOLabeler achieved the first rank in all three GO predictions of 
CAFA3 [20] through integrating logistic regression model with 
multiple sequence-based feature representations. Table 2 sum-
marizes the further details of the above-mentioned methods. 

Although machine learning methods complement the template 
detection-based methods, their prediction accuracy could be unsat-
isfactory. The major reason for this is that the feature representa-
tions could be poorly designed and/or relatively simple, failing to 
extract relevant and useful knowledge from the input sequences. 

3.2.2 Deep Learning-

Based Methods 

To solve potential shortcomings of manually designed feature 
representations, deep learning techniques, which have been trans-
ferred from the field of computer vision, were applied in recent 
years [61]. An advantage of deep learning algorithms lies in their 
ability to design complex deep neural network architectures tai-
lored for different data structures that can be used to describe 
proteins, such as one-dimensional sequences, two-dimensional 
contact maps, and three-dimensional atomic coordinates. This



capability allows for deep and multi-view extraction of the knowl-
edge that can be derived from the input sequences, thereby poten-
tially enhancing the scope of feature representation. According to 
whether the pretrained is involved, deep learning-based methods 
can be roughly classified into three categories, including direct 
training-based, pretrained language model-based, and biological 
large language model-based methods. 
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Table 2 
Summary of nine statistical machine learning-based methods for protein function prediction 

Method Refa Year Classifier Availability 

CHUGO [52] 2005 Support vector machine NAb 

Lee’s method [53] 2006 Kernel-based logistic 
regression 

NA 

FFPred [54] 2008 Support vector machine http://bioinfadmin.cs.ucl.ac.uk/downloads/ 
ffpred/ 

GOPred [55] 2010 Support vector machine http://kinaz.fen.bilkent.edu.tr/gopred 

Jeong’s 
method 

[56] 2011 Support vector machine NA 

TMEC [57] 2013 Directed birelational graph https://sites.google.com/site/guoxian85/ 
tmec 

HMC-LMLP [58] 2016 Multilayer perceptron http://sites.google.com/site/cerrirc/ 
downloads 

GOLabeler [59] 2018 Logistic regression http://datamining-iip.fudan.edu.cn/ 
golabeler 

MLC [60] 2020 K-nearest neighbors www.github.com/stamakro/MLC 

a Ref reference 
b NA not available 

Early deep learning methods directly trained function predic-
tion models on the protein datasets with known functional annota-
tions through integrating deep neural networks (e.g., 
convolutional neural network [62] and recurrent neural network 
[63]) with sequence encoding. Representative examples include 
DeepGO [61], DeepGOA [64], FFPred-GAN [8], TALE [65], 
DeepPFP-CO [66], and DeepGOZero [67]. DeepGO is known 
as the first deep learning-based method for functional prediction, 
achieving the third rank in the MF prediction of CAFA3 [20]. In 
addition, several methods incorporate structure and interaction 
network knowledge into sequence data to train prediction models, 
with selected examples of MultiPredGO [68] and DeepGraphGO 
[69], and further details in Table 3. 

Compared to the statistical machine learning-based methods, 
the above-mentioned deep learning methods on average tend to 
produce more accurate predictions. However, there is still room for

http://bioinfadmin.cs.ucl.ac.uk/downloads/ffpred/
http://bioinfadmin.cs.ucl.ac.uk/downloads/ffpred/
http://kinaz.fen.bilkent.edu.tr/gopred
https://sites.google.com/site/guoxian85/tmec
https://sites.google.com/site/guoxian85/tmec
http://sites.google.com/site/cerrirc/downloads
http://sites.google.com/site/cerrirc/downloads
http://datamining-iip.fudan.edu.cn/golabeler
http://datamining-iip.fudan.edu.cn/golabeler
http://www.github.com/stamakro/MLC


further improvement. Since these deep-learning algorithms train 
prediction models on the protein datasets with known function 
annotations, their performance highly depends on the scale of 
these training datasets. If the amount of training data is limited, 
deep learning models cannot comprehensively learn relationships 
between protein sequences/structures and their functions, poten-
tially leading to unsatisfactory prediction performance. As of 
January 2024, the GOA database has ~133,700 proteins with 
function annotations via biological experiments, where 81.52% of 
function terms are associated with fewer than 50 protein entries. 
This amount of training data might be insufficient to train high-
accuracy deep learning models, especially if the corresponding net-
works are excessively large. 
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Table 3 
Summary of eight state-of-the-art direct training-based methods in deep learning-based protein 
function prediction 

Method Refa Year 
Deep neural network 
model Availability 

DeepGO [61] 2018 Convolutional neural 
network 

https://deepgo.cbrc.kaust.edu.sa/ 

DeepGOA [64] 2020 Long- and short-time 
memory 

https://github.com/CSUBioGroup/ 
DeepGOA 

FFPred-GAN [8] 2020 Generative adversarial 
network 

https://github.com/psipred/FFPredGAN 

MultiPredGO [68] 2020 Residual neural 
network 

https://github.com/SwagarikaGiri/Multi-
PredGO 

DeepGraphGO [69] 2021 Graph convolutional 
network 

https://github.com/yourh/DeepGraphGO 

TALE [65] 2021 Attention network https://github.com/Shen-Lab/TALE 

DeepPFP-CO [66] 2022 Graph convolutional 
network 

https://csuligroup.com/DeepPFP/ 

DeepGOZero [67] 2022 Fully connect network https://github.com/bio-ontology-research-
group/deepgozero 

a Ref reference 

To address the issues that stem from an insufficient amount of 
training data, the pretraining strategy has been utilized in the 
protein function prediction field. First, deep learning techniques 
are used to train an unsupervised language model on a large num-
ber of protein sequences without functional annotations by consid-
ering available evolutionary, structural, and functional knowledge. 
Then, these language models are used to encode protein sequences 
as feature embeddings, which are fed into supervised deep neural 
networks to train function prediction models. Taking DeepFRI [7]

https://deepgo.cbrc.kaust.edu.sa/
https://github.com/CSUBioGroup/DeepGOA
https://github.com/CSUBioGroup/DeepGOA
https://github.com/psipred/FFPredGAN
https://github.com/SwagarikaGiri/Multi-PredGO
https://github.com/SwagarikaGiri/Multi-PredGO
https://github.com/yourh/DeepGraphGO
https://github.com/Shen-Lab/TALE
https://csuligroup.com/DeepPFP/
https://github.com/bio-ontology-research-group/deepgozero
https://github.com/bio-ontology-research-group/deepgozero


as an example, it utilizes the long short-term memory network to 
train an unsupervised protein language model on more than 10 mil-
lion sequences, which are integrated with the supervised graph 
convolutional neural network that implements the function predic-
tion model. Other representative examples include deepNF [70], 
MGEGFP [71], Domain-PFP [72], CFAGO [73], HiFun [74], 
PFmulDL [75], and AnnoPRO [76], which we summarize in 
Table 4. 
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Table 4 
Summary of eight popular pretrained language model-based methods in deep learning-based protein 
function prediction 

Method Refa Year Network modelsb Availability 

deepNF [70] 2018 FCN (3, 0.02 M) + SVM https://github.com/VGligorijevic/ 
deepNF 

DeepFRI [7] 2021 LSTM (2, 10 M) + GCN https://beta.deepfri.flatironinstitute.org/ 

MGEGFP [71] 2022 GCN (3, 0.02) + LightGBM https://github.com/zhanglabNKU/ 
MGEGFP 

Domain-
PFP 

[72] 2023 FCN (2, 0.53 M) + FCN https://github.com/kiharalab/Domain-
PFP 

CFAGO [73] 2023 AN-MLP (1, 2, 0.01 M) + MLP http://bliulab.net/CFAGO/ 

HiFun [74] 2023 FCN (2, 0.34 M) + CNN-LSTM-
AN 

http://www.unimd.org/HiFun 

PFmulDL [75] 2022 CNN (2, 0.03 M) + CNN https://github.com/idrblab/PFmulDL 

AnnoPRO [76] 2024 CNN-FCN (1, 5, 
0.09 M) + LSTM 

https://github.com/idrblab/AnnoPRO 

FCN Fully connected network, SVM support vector machine, LSTM long- and short-time memory, GCN graph 
convolution network, LightGBM light gradient boosting machine, AN-MLP the combination of attention network 

with one layer and multilayer perceptron with two layers, MLP multilayer perceptron, CNN-LSTM-AN the combination 
of convolution neural network, long- and short-time memory, and attention network, CNN convolution neural network, 
CNN-FCN the combination of convolution neural network with one layer and fully connected network with five layers 
a Ref reference 
b Network models consist of a pretrained language model (number of layers, number of training sequences) for feature 
embeddings and a supervised training model for function prediction 

Despite the encouraging performance of these methods, some 
challenges remain. Specifically, the size of datasets and the scale of 
neural networks are relatively small in the pretraining phase (see 
Table 4), thereby restricting further performance improvement. In 
recent years, a series of biological large language models, including 
SeqVec [77], TAPE [78], ESM-1b [79], ProtTrans [80], ESM2 
[81], SaProt [82], Ankh [83], and CARP [84] (see details in 
Table 5), have emerged, achieving outstanding performance in 
numerous bioinformatics tasks, such as protein structure prediction 
[43, 81] and ligand-binding prediction [85]. Their performance 
advantages are primarily attributed to the large-scale training

https://github.com/VGligorijevic/deepNF
https://github.com/VGligorijevic/deepNF
https://beta.deepfri.flatironinstitute.org/
https://github.com/zhanglabNKU/MGEGFP
https://github.com/zhanglabNKU/MGEGFP
https://github.com/kiharalab/Domain-PFP
https://github.com/kiharalab/Domain-PFP
http://bliulab.net/CFAGO/
http://www.unimd.org/HiFun
https://github.com/idrblab/PFmulDL
https://github.com/idrblab/AnnoPRO


datasets and highly complex neural networks. More specifically, 
most of the above-mentioned language models are deep neural 
networks with over 20 layers, trained on hundreds of millions of 
protein sequences. They have the capacity to effectively learn from 
these large sequence datasets, encoding sequences into highly 
dimensional feature representations that aim to encapsulate struc-
tural and functional patterns. In light of this, several protein lan-
guage models have been utilized for protein function prediction, 
where they are used directly as pretrained language models to 
encode protein sequences. This has enhanced the accuracy of the 
function prediction. For instance, DeepGO-SE utilizes the ESM2 
to extract the discriminative feature embeddings, which are further 
fed to multiple GO semantic entailment models for high-accuracy 
function prediction [86]. Other key examples include GOPredSim 
[87], PANDA2 [88], ATGO [89], GAT-GO [90], GNNGO3D 
[91], Struct2GO [92], MMSMAPlus [93], SPROF-GO [94], 
HNetGO [95], HEAL [96], TransFun [97], TEMPROT [98], 
PredGO [99], and DeepGOMeta [100], which we summarize in 
Table 6. 

38 Yi-Heng Zhu et al.

Table 5 
Summary of eight biological large language models employed in protein function prediction 

Model Refa Year (Layers, Params)b Availability 

SeqVec [77] 2019 (3, 93 M) https://github.com/Rostlab/SeqVec 

TAPE [78] 2019 (12, 38 M) https://github.com/songlab-cal/tape 

ESM-1b [79] 2021 (33, 650 M) https://github.com/facebookresearch/esm 

ProtTrans [80] 2021 (24, 3B) https://github.com/agemagician/ProtTrans 

ESM2 [81] 2023 (48, 15B) https://github.com/facebookresearch/esm 

SaProt [82] 2023 (33, 650 M) https://github.com/westlake-repl/SaProt 

Ankh [83] 2023 (48, 1.15B) https://github.com/agemagician/Ankh/tree/main 

CARP [84] 2024 (56, 640 M) https://github.com/microsoft/protein-sequence-models 

a Ref reference 
b Layers, params: The number of layers and hyper-parameters for neural networks in biological large language models 

In summary, deep learning-based methods have become the 
mainstream approach in the field of protein function prediction, 
and their prediction performance often surpasses that of the tem-
plate detection-based and statistical machine learning-based meth-
ods. However, their drawback is the heavy dependency on large-
scale training data and huge computational resources. 

3.3 Composition 

Methods 

Composition methods are designed by ensembling the prediction 
results of multiple template detection and machine learning-based 
methods, with the underlying aim to further improve prediction

https://github.com/Rostlab/SeqVec
https://github.com/songlab-cal/tape
https://github.com/facebookresearch/esm
https://github.com/agemagician/ProtTrans
https://github.com/facebookresearch/esm
https://github.com/westlake-repl/SaProt
https://github.com/agemagician/Ankh/tree/main
https://github.com/microsoft/protein-sequence-models


accuracy [ , ]. In the last CAFA competition (CAFA4),
composition methods have shown great potential [ ]. The repre-
sentative example is NetGO, which achieves the first rank among all
the competing methods for MF, BP, and CC predictions
[ ]. This method uses the rank learning algorithm to ensemble
the prediction results of six template detection and machine
103

48
102101
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Table 6 
Summary of 15 state-of-the-art biological large language model-based methods in deep learning-
based protein function prediction 

Method Refa Year Network modelsb Availability 

GOPredSim [87] 2021 SeqVec + KNN https://embed.protein.properties/ 

PANDA2 [88] 2022 ESM-1b + GNN http://dna.cs.miami.edu/PANDA2/ 

ATGO [89] 2022 ESM-1b + FCN https://zhanggroup.org/ATGO/ 

GAT-GO [90] 2022 ESM-1b + GAT NAc 

GNNGO3D [91] 2023 ESM-1b + GAT-
GCN 

NA 

Struct2GO [92] 2023 SeqVec + GCN https://github.com/lyjps/Struct2GO 

MMSMAPlus [93] 2023 ProtTrans + 
CNN-AN 

https://github.com/wzy-2020/MMSMAPlus 

SPROF-GO [94] 2023 ProtTrans + AN https://github.com/biomed-AI/SPROF-GO/ 

HNetGO [95] 2023 SeqVec + AN https://github.com/BIOGOHITSZ/HNetGO 

HEAL [96] 2023 ESM-1b + GCN-
AN 

https://github.com/ZhonghuiGu/HEAL 

TransFun [97] 2023 ESM-1b + EGNN https://github.com/jianlin-cheng/TransFun 

TEMPROT [98] 2023 ProtTrans + MLP https://github.com/gabrielbianchin/TEMPROT/ 

PredGO [99] 2023 ESM-
1b + EGNN-
AN 

http://predgo.denglab.org/ 

DeepGO-SE [86] 2024 ESM2 + MLP https://github.com/bio-ontology-research-group/ 
deepgo2 

DeepGOMeta [100] 2024 ESM2 + MLP https://github.com/bio-ontology-research-group/ 
deepgometa 

KNN K-nearest neighbors, GNN graph neural network, FCN fully connected network, GAT graph attention network, 
GAT-GCN the combination of graph attention network and graph convolution network, GCN graph convolution 
network, CNN-AN the combination of convolution neural network and attention network, AN attention network, 
GCN-AN the combination of graph convolution network and attention network, EGNN Equivariant graph neural 
network, MLP multilayer perceptron, EGNN-AN the combination of equivariant graph neural network and attention 

network 
a Ref reference 
b Network models consist of a biological large language model for feature embeddings and a supervised training model for 
function prediction 
c NA not available

https://embed.protein.properties/
http://dna.cs.miami.edu/PANDA2/
https://zhanggroup.org/ATGO/
https://github.com/lyjps/Struct2GO
https://github.com/wzy-2020/MMSMAPlus
https://github.com/biomed-AI/SPROF-GO/
https://github.com/BIOGOHITSZ/HNetGO
https://github.com/ZhonghuiGu/HEAL
https://github.com/jianlin-cheng/TransFun
https://github.com/gabrielbianchin/TEMPROT/
http://predgo.denglab.org/
https://github.com/bio-ontology-research-group/deepgo2
https://github.com/bio-ontology-research-group/deepgo2
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https://github.com/bio-ontology-research-group/deepgometa


learning methods, which rely on different types of information 
that include sequence similarity, sequence composition, amino 
acid physicochemical property, protein family coding, naı̈ve proba-
bility of GO terms, and protein–protein interaction network. 
Other examples of composition methods include DeepText2GO 
[104], DeepGOPlus [105], TALE+ [65], ATGO+ [89], TransFun 
+  [97], and TEMPROT+ [98], which we detail in Table 7.
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Compared to the use of individual predictors, composition 
methods potentially integrate more biological knowledge and 
thus could achieve higher prediction performance. Moreover, com-
position methods can effectively incorporate additional state-of-
the-art methods by modifying decision fusion models, offering 
the advantage of being easy to update. However, if the training 
data and models of the individual sub-methods are not properly 
considered, composition methods are prone to parameter overfit-
ting, leading to potentially negative effects on the predictive quality. 

3.4 Evaluation Metric 

3.4.1 Protein-Centric 

Metric 

Three evaluation metrics have been widely used to evaluate the 
performance of protein function prediction methods, especially in 
the CAFA competitions, including the maximum F1-score (Fmax), 
minimum semantic distance (Smin), and area under the precision-
recall curve (AUPRC) [20, 106, 107]. 

Fmax is a basic metric in binary classification, considered the 
most important metric in CAFA competition with the following 
definition: 

Fmax = max 
t 

2⋅Pre tð  Þ⋅Rec tð  Þ  
Pre tð  Þ þ  Rec tð  Þ  ð1Þ

Table 7 
Summary of seven state-of-the-art composition methods for protein function prediction 

Method Refa Year (NT, NL)b Availability 

DeepText2GO [104] 2018 (1, 4) NAc 

NetGO [103] 2019 (2, 4) https://dmiip.sjtu.edu.cn/ng3.0 

DeepGOPlus [105] 2020 (1, 1) http://deepgoplus.bio2vec.net/ 

TALE+ [65] 2021 (1, 1) https://github.com/Shen-Lab/TALE 

ATGO+ [89] 2022 (1, 1) https://zhanggroup.org/ATGO/ 

TransFun+ [97] 2023 (1, 1) https://github.com/jianlin-cheng/TransFun 

TEMPROT+ [98] 2023 (1, 1) https://github.com/gabrielbianchin/TEMPROT/ 

a Ref reference 
b NT and NL are the numbers of template dection-based and machine learning-based sub-methods, respectively, in the 

composition method 
c NA not available

https://dmiip.sjtu.edu.cn/ng3.0
http://deepgoplus.bio2vec.net/
https://github.com/Shen-Lab/TALE
https://zhanggroup.org/ATGO/
https://github.com/jianlin-cheng/TransFun
https://github.com/gabrielbianchin/TEMPROT/
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Pre tð  Þ= 
1 

m  tð  Þ ⋅ 
m  tð  Þ  

i =1 

NG 

j =1 

1 s ij ≥ t ⋅I ij 

NG 

j =1 

1 s ij ≥ t

ð2Þ

Rec tð  Þ= 
1 
NP 

⋅ 
NP 

i =1 

NG 

j =1 

1 s ij ≥ t ⋅I ij 

NG 

j =1 

I ij 

ð3Þ 

where t is a threshold ranging from 0 to 1, Pre(t) and Rec(t) are 
precision and recall, respectively, under the threshold t; sij is the 
confidence score that the i-th protein is associated with the j-th GO 
term by the function prediction model; 1(∙) = 1, if the input is true; 
otherwise, 1(∙) = 0; Iij = 1, if the i-th protein is associated with the 
j-th GO term in the experimental annotations; otherwise, Iij = 0; 
m(t) is the number of proteins that have at least one GO term with a 
confidence score higher than t; NP is the number of all test proteins, 
and NG is the number of all GO terms. 

AUPRC is a threshold-independent evaluation metric, calcu-
lated by the area under the precision-recall curve over all threshold 
values. 

Smin is an information theoretic-based metric, defined as 
follows: 

Smin = min 
t 

ru tð  Þ2 þ mi tð  Þ2 ð 4Þ

ru tð  Þ= 
1 
NP 

⋅ 
NP 

i =1 

NG 

j =1 

ic jð  Þ⋅1 s ij < t ⋅I ij ð 5Þ

mi tð  Þ= 
1 
NP 

⋅ 
NP 

i =1 

NG 

j =1 

ic jð  Þ⋅1 s ij ≥ t ⋅ 1- I ij ð 6Þ

ic jð  Þ= log 2 
1 

p  j jparent jð  Þð Þ  ð7Þ

where ru(t) and mi(t) are the remaining uncertainty and misinfor-
mation, respectively, under the threshold t; ic( j) is the information 
content of the j-th GO term, and p( j| parent( j)) is the conditional 
probability of the j-th term given its parent terms within the hierar-
chical GO structure, with additional details in the reference [106]. 

3.4.2 Term-Centric 

Metric 

The area under the receiver operating characteristic curve 
(AUROC) is a crucial metric for binary classification and has been 
extensively employed to assess the performance of function predic-
tion methods at the term-centric level [108]. Specifically, for a



given GO term Qi, each test protein is labeled as “1” or “0”, where 
“1” indicates this protein is associated with Qi in the experimental 
annotation. Next, a confidence score for Qi is assigned to each 
protein by the function prediction model. Finally, the AUROC is 
utilized to assess the prediction performance of Qi through inte-
grating the confidence scores and labels for all test proteins. 
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3.5 Applications of 

Protein Function 

Prediction 

Protein function prediction models have important applications in 
the following areas: 

1. Deciphering cellular processes. Accurate protein function predic-
tions can be used to elucidate the roles of proteins in various 
cellular processes, thereby knowing which proteins are involved 
in certain cellular pathways [109–111]. This helps to explain 
functions at the cellular level. 

2. Drug Discovery and Design. Function annotations can indicate 
which proteins are involved in disease pathways, leading to the 
discovery of new drug targets [112–114]. Moreover, a com-
prehensive analysis of molecular functions (e.g., ligand-binding 
and enzymatic activity) can guide the drug design for a target 
protein [115]. 

3. Protein Design. High-accuracy protein function prediction 
models could identify proteins with functions that are not 
present or are rare in nature [116–118]. By analyzing the 
molecular mechanisms of these rare proteins, novel proteins 
with tailored functions for various applications can be designed 
in protein engineering. 

4. Functional Genomics. By identifying the functions of proteins, 
we can locate the functionally related genes that are involved in 
the biological pathways or processes [119–121]. This analysis 
facilitates the discovery of gene relationship networks and reg-
ulatory mechanisms underlying complex biological 
phenomena. 

5. Evolutionary Study. By analyzing the genomes of different 
species, we can identify genes and proteins that are conserved 
across evolutionary distances [122–124]. Accurate function 
prediction of these conserved proteins provides insights into 
fundamental biological processes that have been maintained 
throughout evolution. 

4 Discussions 

Protein function prediction, i.e., gene ontology prediction, can be 
viewed as a multi-label prediction task that can be solved via 
machine learning. Recently, machine learning, especially deep 
learning methods have achieved great progress in protein function



prediction. This chapter provides an overview of the protein func-
tion predictors, alongside the recent advancements in this field of 
research, which cover the following observations. 
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1. Template detection-based methods played a dominant role in 
the early stage of protein function prediction. These methods 
can be further divided into five categories, including sequence 
alignment, structure alignment, interaction network, family 
transference, and multi-attribute fusion-based methods. 

2. Machine learning-based methods have emerged in recent years, 
including statistical machine learning- and deep learning-based 
methods. The latter has been the primary driving force behind 
the advancement of protein function prediction, with three 
development stages, i.e., direct training, pretrained language 
model, and biological large language model-based methods. 

3. Composition methods combine the strengths of template 
detection and machine learning-based methods, further 
enhancing the accuracy of protein function prediction. In the 
last CAFA4 competition, the top performers are both compo-
sition methods, with the typical example of NetGO [103]. 

Despite significant progress, some challenges remain. First, 
most deep learning methods directly perform function prediction 
from sequence alone. With the rapid development of protein struc-
ture prediction models (e.g., AlphaFold2 [43] and ESMFold [81]), 
the structural information that is often relevant to function predic-
tion should be considered at a greater depth. Moreover, consider-
ing that proteins are gene expression products, incorporating gene 
knowledge into function prediction could be a promising strategy 
to improve accuracy [125]. Studies along these lines are in progress 
[126–128]. 
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