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Supporting Text 
 

Text S1. Definitions of DNA-binding sites 

In the PDNA-335 and PDNA-52 datasets, the DNA-binding sites are defined using the 

criterion of the protein-ligand binding database BioLip [1], consistent with that used in 

the Critical Assessment of Structure Prediction (CASP) [2, 3]. Specifically, a protein 

residue with at least an inter-molecular atomic contact to a DNA molecule is labeled as 

a DNA binding site, where the inter-molecular atomic contact is a non-hydrogen 

protein-DNA atom pair whose Euclidian distance is less than the sum of van der Waals 

radii plus 0.5 Å. It is noted that this criterion has been tightened up in the newest BioLip 

database (i.e., BioLip2) [4], in which a protein residue with at least two inter-molecular 

atomic contacts to a DNA is defined as a DNA binding site. 

In the PDNA-316 dataset, the DNA-binding sites are defined by the criteria of 

Ahmad’s work [5], which is the first work for protein-DNA binding site prediction (to 

our best knowledge). Specifically, in a protein-DNA complex, an amino acid residue in 

the protein is defined as a DNA-binding site if the distance between any atoms of this 

residue and any atoms of the DNA molecule is less than a cut-off value. In the PDNA-

316, this cut-off is set to be 3.5 Å. 

PDNA-543 and PDNA-41 were constructed by the TargetDNA paper [6], which 

does not provide any details for defining DNA-binding sites. However, we infer that 

the definition of DNA-binding sites for these two datasets is the same as that for the 

PDNA-316 dataset via the criteria of Ahmad’s work due to the following observations. 

Specifically, there are 101 overlap proteins between the PDNA-543 and PDNA-316 

datasets, where 98.0% overlap proteins have consistent DNA-binding site annotations 

between these two datasets. Meanwhile, there are 91 overlap proteins between the 

PDNA-543 and PDNA-335 datasets, but only 12.1% overlap proteins have consistent 

DNA-binding site annotations. 

To further demonstrate our inference, we designed the following computational 

experiments. Specifically, we separately used different criteria to re-define the DNA-

binding sites for the protein chains in the PDNA-543 and PDNA-41 datasets and then 

calculated the consistency ratio between re-defined DNA-binding sites and originally 

annotated DNA-binding sites. The higher consistency ratio means that the re-

implemented criterion is more similar to the original criterion used in the TargetDNA 

paper. It is noted that there are 86 protein chains whose DNA-binding sites cannot be 



re-defined in the PDNA-543 and PDNA-41. The underlying reason is that these proteins 

have been obsoleted or updated in the PDB database from the year 2016 to now. As a 

result, their PDB structures are unavailable, or the sequences extracted from their 

structures are inconsistent with the original sequences provided by the TargetDNA 

paper. Therefore, we only collected 498 protein chains from the PDNA-543 and PDNA-

41 whose consistency ratio between re-defined and originally annotated DNA-binding 

sites could be calculated. Here, the consistency ratio (denoted as CR) is defined as 

CR=N1/N2, where N1 is the number of protein chains whose re-defined DNA-binding 

sites are consistent with the originally annotated DNA-binding sites in the TargetDNA 

paper; N2 is the total number of available protein chains (i.e., N2=498). In our 

experiments, we used four different criteria to re-define DNA-binding sites, including 

the criterion of CASP and the criterion of Ahmad’s work with the cutoff values of 3.0 

Å, 3.5 Å, and 4.0 Å, where the corresponding CR values are 9.8%, 0.0%, 89.6%, and 

4.2%, respectively. These experiment data further demonstrated that the TargetDNA 

paper probably used the criterion of Ahmad’s work with the cut-off=3.5 Å to define 

DNA-binding sites. It could not escape our notice that there is nearly a 10% difference 

between the re-defined and originally annotated DNA-binding sites. This difference 

may be due to that the PDB structures for part of proteins have been updated from 2016 

to now. The source codes and experiment data for re-defining DNA-binding sites in 498 

protein chains from the PDNA-543 and PDNA-41 datasets are available at 

https://github.com/yiheng-zhu/ULDNA/tree/main/Check_TargetDNA.   

 

Text S2. Procedures for the ESM2 transformer 

A. Masking 

For an input sequence, the masking strategy [7] is performed on the corresponding 

tokens (i.e., amino acids). Specifically, we randomly sample 15% tokens, each of which 

is changed as a special “masking” token with 80% probability, a randomly chosen 

alternate amino acid with 10% probability, and the original input token (i.e., no change) 

with 10% probability. 

B. One-hot encoding  

The masked sequence is represented as a 𝐿 × 28 matrix using one-hot encoding [8], 

where 28 is the types of tokens, including 20 common amino acids, 6 non-common 

amino acids (B, J, O, U, X, and Z), 1 gap token, and 1 “masking” token. 

https://github.com/yiheng-zhu/ULDNA/tree/main/Check_TargetDNA


C. Embedding with position information 

The one-hot coding matrix 𝑋 of the masked sequence is multiplied by an embedding 

weight matrix 𝑊! to generate an embedding matrix 𝐻!: 

 𝐻! = 𝑋𝑊! , 𝑋 ∈ 𝑅"×$%,𝑊! ∈ 𝑅$%×& , 𝐻! ∈ 𝑅"×& (S1) 

where 𝐿 is the length of the masked sequence, 28 is the types of tokens in the masked 

sequence, and 𝐷 is the embedding dimension.   

Then, the position embedding strategy is used to record the position of each token 

in the masked sequence to generate a position embedding matrix 𝐻': 

 𝐻' = -

ℎ(
ℎ$
…
ℎ"

0 , ℎ) = 1𝑣),(, 𝑣),$, … , 𝑣),&3, 	𝐻' ∈ 𝑅"×&, and 	ℎ) ∈ 𝑅& (S2) 

𝑣),$+ = sin	( )
(,,,,!"/$

),	𝑣),$+-( = cos	( )
(,,,,(!"&')/$

), 𝑘 = 0, 	1, 	. . , 	(𝐷 − 1)/2 (S3) 

where 	ℎ) is the embedding vector for the 𝑖-th position in the masked sequence.  

Finally, two embedding matrices are added as a combination embedding matrix 

𝐻(: 

 𝐻( = 𝐻! + 𝐻' , 𝐻( ∈ 𝑅"×& (S4) 

D. Self-attention  

The embedding matrix 𝐻(	is fed to a self-attention block with 𝑛 layers, each of which 

consists of 𝑚 attention heads, a linear unit, and a feed-forward network (FFN). In each 

attention head, the scale dot-product attention is performed as follows: 

 𝐴),. = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑀),.
/𝑀),.

0 1/O𝑑).)	𝑀),.
2 	 (S5) 
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2 = 𝐻)𝑊),.

2 	 (S6) 

 𝑑). = 𝐷/𝑚, 𝑊),.
/ ,𝑊),.

0 ,𝑊),.
2  ∈ 𝑅&×(

$
)), 𝑀),.

/ , 𝑀),.
0 ,	𝑀),.

2 ,			𝐴),. ∈ 𝑅
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where 𝐴),.  is the attention matrix in the (𝑖 -th layer, 𝑗-th head) and measures the 

evolution correlation for each amino acid pair in the sequence, 𝑀),.
/ , 𝑀),.

0 , and	𝑀),.
2 	are 

Query, Key, and Value matrices in the (𝑖-th layer, 𝑗-th head), 𝐻) 	is the input matrix in 

the 𝑖-th layer,	𝑊),.
/, 𝑊),.

0 , and 𝑊),.
2 	are weight matrices, and 𝑑). is the scale parameter. 

The outputs of all attention heads in the 𝑖-th layer are concatenated as a new 

matrix 𝐴), which is further fed to a linear unit to output the matrix 𝑈) 	: 

 𝐴) = 𝐴),(𝐴),$…𝐴),5	 (S8) 



 𝑈) = 𝐴)𝑊)
( + 𝑏)(, 𝑊)

( ∈ 𝑅&×& , 𝐴) , 	𝑏)(, 𝑈) ∈ 𝑅"×&	 (S9) 

where 𝑊)
( and 𝑏)( are the weight matrix and bias, respectively, in the linear unit. 

E. Feed-forward network with shortcut connections 

The 𝑈) is added by 𝐻) 	to generate a new matrix 𝐹), which is further fed to the FFN to 

output the matrix 𝑇): 

 𝐹) 	= 𝐻) + 𝑈) 	 (S10) 

 𝑇) = 𝑔𝑒𝑙𝑢(𝐹)𝑊)
$ + 𝑏)$)𝑊)

6 + 𝑏)6, 𝑊)
$,𝑊)

6 ∈ 𝑅&×&, 𝑏)$, 𝑏)6, 𝑇) ∈ 𝑅"×&	 (S11) 

 gelu(𝑥) = x∅(𝑥) (S12) 

where 𝑊)
$ and 𝑊)

6 are weight matrices in the FFN, 𝑏)$ and 𝑏)6 are bias in the FFN, 

and ∅(𝑥)	is the integral of Gaussian Distribution for 𝑥 

The 𝐹) is added by 𝑇) as the output of the 𝑖-th attention layer: 

 𝐻)-(= 𝐹)+ 𝑇) , 𝐻)-( ∈ 𝑅"×& (S13) 

where 𝐻)-( is the evolution diversity-based embedding matrix in the 𝑖-th attention 

layer.  

The output of the last attention layer is fed to a fully connected layer with SoftMax 

function to generate a 𝐿 × 28 probability matrix: 

 𝑃 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝐻7𝑊7 + 𝑏7), 𝑃 ∈ 𝑅"×$% (S14) 

where the (𝑙-th,	 𝑐-th) value in 𝑃 indicates the probability that the 𝑙-th token in the 

masked sequence is predicted as the 𝑐-th type of amino acid, 𝑊7 and 𝑏7 are weight 

matrix and bias, respectively.  

F. Loss function 

The loss function is designed as a negative log-likelihood function between inputted 

one-hot and outputted probability matrices, to ensure that the prediction model correctly 

predicts the true amino acids in the masked position as much as possible: 

 𝐿𝑜𝑠𝑠895 = 𝐸:~< ∑ e− =>?'*,,(*)
|:(A)|

f=∈:(A)  (S15) 

where 𝑥 is a sequence in training protein set 𝑋, 𝑥(𝑀) is a set of masking positions 

in 𝑥, |𝑥(𝑀)| is the number of elements in 𝑥(𝑀), 𝑐(𝑙) is the type index of amino 

acid for the	 𝑙 -th token in 𝑥  before masking, and -𝑙𝑜𝑔𝑃=,C(=)  is the negative log-

likelihood of the true amino acid 𝑥= under the condition of masking.  

The ESM2 transformer is optimized by minimizing the loss function via Adam 

optimization algorithm [9]. Then, the output of the last attention layer is represented as 



a 𝐿 × 𝐷  matrix, as the evolution diversity-based embedding for DNA-binding site 

prediction, where 𝐷 is the number of neurons of FFN. The current ESM2 model with 

3 billion parameters was trained over 60 million proteins from the UniRef50 database 

and can be freely downloaded at https://github.com/facebookresearch/esm, where 𝑛 =
36, 𝑚 = 20, and 𝐷 = 2560. 

 

Text S3. Procedures for the ESM-MSA transformer 

A. Masking  

For an input multiple sequence alignment (MSA), the masking strategy is performed. 

Specifically, for each individual sequence in MSA, we randomly sample 15% tokens 

(amino acids), each of which is changed as a special “masking” token with 80% 

probability, a randomly chosen alternate amino acid with 10% probability, and the 

original input token (i.e., no change) with 10% probability.  

B. One-hot encoding  

The masked MSA is encoded as three matrices using one-hot encoding from three 

different views. Specifically, for the 𝑗-th position of the 𝑖-th sequence in the masked 

MSA, we encode it as three one-hot vectors, i.e., 𝒙)., 𝒚)., and 𝒛)., from the views of 

token type, row position, and column position, respectively.   

      𝒙). = 1𝑥).(, 𝑥).$, … , 𝑥).D)-.3 ∈ 𝑅
D)-. , 𝑥).+ = n

1, 𝑘 = 𝑐).
0, 𝑘 ≠ 𝑐).

 (S16) 

      𝒚). = 1𝑦).(, 𝑦).$, … , 𝑦).A)-.3 ∈ 𝑅
A)-. , 𝑦).+ = n1, 𝑘 = 𝑖

0, 𝑘 ≠ 𝑖 (S17) 

      𝒛). = 1𝑧).(, 𝑧).$, … , 𝑧).")-.3 ∈ 𝑅
")-. , 𝑧).+ = n1, 𝑘 = 𝑗

0, 𝑘 ≠ 𝑗 (S18) 

where 𝑐). is the index of token type for the 𝑗-th position of the 𝑖-th sequence, 𝐶5E: 

is the number of types of tokens, 𝐿5E: and 𝑀5E: are preset maximum values for 

sequence length and alignments, respectively. In this work, 𝐶5E: = 28 and 𝐿5E: =
𝑀5E: = 1024, where 28 types of tokens include 20 common amino acids, 6 non-

common amino acids (B, J, O, U, X, and Z), 1 gap token, and 1 “masking” token.   

According to Eqs. S16-S18, the masked MSA can be encoded as three matrices, 

i.e., 𝑿, 𝒀, and 𝒁, through one-hot encoding from the view of token type, row position, 

and column position, respectively, where 𝑿 ∈ 𝑅A×"×D)-., 𝒀 ∈ 𝑅A×"×A)-., and 𝒁 ∈

𝑅A×"×")-. , 𝑀  is the number of alignments, and 𝐿  is the length of individual 

sequence in the masked MSA.  



C. Initial embedding  

Each one-hot coding matrix is multiplied by a weight matrix to generate the 

corresponding embedding matrix: 

     𝑯F>+87 = 𝑿𝑾F>+87 = -

𝑿[1]
𝑿[2]
…

𝑿[𝑀]

0𝑾F>+87 = -

𝑿[1]𝑾F>+87
𝑿[2]𝑾F>+87

…
𝑿[𝑀]𝑾F>+87

0 ∈ 𝑅A×"×& (S19) 

𝑿[𝑖] ∈ 𝑅"×D)-. ,𝑾F>+87 ∈ 𝑅D)-.×& 

     𝑯G>H = 𝑿𝑾G>H = -

𝒀[1]
𝒀[2]
…

𝒀[𝑀]

0𝑾G>H = -

𝒀[1]𝑾G>H
𝒀[2]𝑾G>H

…
𝒀[𝑀]𝑾G>H

0 ∈ 𝑅A×"×& (S20) 

𝒀[𝑖] ∈ 𝑅"×A)-. ,𝑾G>H ∈ 𝑅A)-.×& 

     	𝑯C>= = 𝒁𝑾C>= = -

𝒁[1]
𝒁[2]
…

𝒁[𝑀]

0𝑾C>= = -

𝒁[1]𝑾C>=
𝒁[2]𝑾C>=

…
𝒁[𝑀]𝑾C>=

0 ∈ 𝑅A×"×& (S21) 

𝒁[𝑖] ∈ 𝑅"×")-. ,𝑾C>= ∈ 𝑅")-.×& 

where 𝑿[𝑖], 𝒀[𝑖] and 𝒁[𝑖] are the one-hot coding matrices for the 𝑖-th sequence in 

the masked MSA from the view of token type, row position, and column position, 

respectively, 𝑯F>+87, 𝑯G>H, and 𝑯C>= are token type-based, row position-based, and 

column position-based embedding matrices for the masked MSA, respectively, and 𝐷 

is the embedding dimension. In this work, 𝐷 = 768.  

Three embedding matrices are added as an initial embedding matrix 𝑯𝑖𝑛𝑖𝑡: 

      𝑯)7)F = 𝑯F>+87 +𝑯G>H +𝑯C>= , 𝑯)7)F ∈ 𝑅A×"×& (S22) 

D. Batch normalization and dropout   

The initial embedding matrix 𝑯)7)F is fed to the batch normalization layer to generate 

the corresponding normalized matrix 𝑯(: 

      𝑯( = 𝐵𝑁(𝑯)7)F) = ~
𝐵𝑁(𝒉(() ⋯ 𝐵𝑁(𝒉(")

⋮ ⋱ ⋮
𝐵𝑁(𝒉A() ⋯ 𝐵𝑁(𝒉A")

� (S23) 

     𝐵𝑁1𝒉).3 = 𝛾 ∙ 𝒉/0JK/0
LM/0

!-N
+ 𝛽, 𝒉). ∈ 𝑅& (S24) 

where 𝒉). is the initial embedding vector for the 𝑗-th position of the 𝑖-th sequence in 

the masked MSA, 𝑢). and 𝜎).$  are mean and variance for 𝒉)., respectively, and 𝛾, 𝛽, 



and 𝜖 are normalized factors.  

The normalized matrix 𝑯( is fed to the dropout layer: 

      𝑯( ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑯(, 𝑟) (S25) 

where 𝑟  is the rate of neurons that are randomly dropped in each training step, 

indicating that the corresponding weight vectors will be not optimized.  

E. Self-attention    

The initial embedding matrix 𝑯( is fed to the self-attention network with 𝑁 blocks, 

each of which consists of three sub-blocks. In this work, 𝑁 = 12.   

The first sub-block consists of a batch normalization layer, a row attention layer, 

a dropout layer, and a short connection.  

      𝑯+
O = 𝐵𝑁(𝑯+) (S26) 

      𝑯+
P = 𝑅𝐴(𝑯+

O) (S27) 

      𝑯+
P ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑯+

P , 𝑟) (S28) 

      𝑭+ = 𝑆𝐶(𝑯+ , 𝑯+
P) = 𝑯+ +𝑯+

P (S29) 

where 𝑯+ and 𝑭+ are the input and output matrices in the first sub-block of the 𝑘-th 

self-attention block, respectively, 𝐵𝑁(∙) is the batch normalization function (see Eqs. 

S23-S24), 𝑆𝐶(∙) is the short connection, and 𝑅𝐴(∙) is the row attention layer (see Eqs. 

S38-S45), 𝑯+, 𝑯+
O, 𝑯+

P, 𝑭+ ∈ 𝑅A×"×&. 

The second sub-block consists of a batch normalization layer, a column attention 

layer, a dropout layer, and a short connection.  

      𝑭+O = 𝐵𝑁(𝑭+) (S30) 

      𝑭+D = 𝐶𝐴(𝑭+O) (S31) 

      𝑭+D ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑭+D , 𝑟) (S32) 

      𝑼+ = 𝑆𝐶(𝑭+ , 𝑭+D) = 𝑭+ + 𝑭+D  (S33) 

where 𝑭+ and 𝑼+ are the input and output matrices in the second sub-block of the 𝑘-

th self-attention block, respectively, 𝐶𝐴(∙) is the column attention layer (see Eqs. S46-

S54), and 𝑭+O, 𝑭+D , 𝑼+ ∈ 𝑅A×"×&. 

The last sub-block consists of a batch normalization layer, a feed-forward network, 

a dropout layer, and a short connection.  

      𝑼+O = 𝐵𝑁(𝑼+) (S34) 

      𝑼+Q = 𝐹𝐹𝑁(𝑼+O) (S35) 

      𝑼+Q ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑼+Q , 𝑟) (S36) 



      𝑯+-( = 𝑆𝐶(𝑼+ , 𝑼+Q) = 𝑼+ + 𝑼+Q (S37) 

where 𝑼+ and 𝑯+-( are the input and output matrices in the third sub-block of the 

𝑘-th self-attention block, respectively, 𝐹𝐹𝑁(. ) is the feed-forward network (see Eqs. 

S55-S60), and 𝑼+O, 𝑼+Q, 𝑯+-( ∈ 𝑅A×"×&.  

(a) Row attention 

Each row attention layer consists of 𝑚 attention heads and a linear unit, where 𝑚 =
12. In each attention head, the input matrix is multiplied by three weight matrices to 

generate the corresponding Query, Key, and Value matrices. 

      𝑸+FP = 𝑯+
O𝑾+F

/P =

⎣
⎢
⎢
⎡𝑯+

O[1]
𝑯+
O[2]
…

𝑯+
O[𝑀]⎦

⎥
⎥
⎤
𝑾+F

/P =

⎣
⎢
⎢
⎢
⎡𝑯+

O[1]𝑾+F
/P

𝑯+
O[2]𝑾+F

/P

…
𝑯+
O[𝑀]𝑾+F

/P⎦
⎥
⎥
⎥
⎤
∈ 𝑅A×"×(

$
)) (S38) 

      𝑲+F
P = 𝑯+

O𝑾+F
0P =

⎣
⎢
⎢
⎡𝑯+

O[1]
𝑯+
O[2]
…

𝑯+
O[𝑀]⎦

⎥
⎥
⎤
𝑾+F

0P =

⎣
⎢
⎢
⎡𝑯+

O[1]𝑾+F
0P

𝑯+
O[2]𝑾+F

0P

…
𝑯+
O[𝑀]𝑾+F

0P⎦
⎥
⎥
⎤
∈ 𝑅A×"×(

$
)) (S39) 

      𝑽+FP = 𝑯+
O𝑾+F

2P =

⎣
⎢
⎢
⎡𝑯+

O[1]
𝑯+
O[2]
…

𝑯+
O[𝑀]⎦

⎥
⎥
⎤
𝑾+F

2P =

⎣
⎢
⎢
⎡𝑯+

O[1]𝑾+F
2P

𝑯+
O[2]𝑾+F

2P

…
𝑯+
O[𝑀]𝑾+F

2P⎦
⎥
⎥
⎤
∈ 𝑅A×"×(

$
)) (S40) 

	𝑯+
O[𝑖] ∈ 𝑅"×& ,𝑾+F

/P ,𝑾+F
0P ,𝑾+F

2P ∈ 𝑅&×(
&
5) 

where 𝑯+
O is the input matrix of row attention layer in the 𝑘-th self-attention block 

(See Eq. S27), 𝑸+FP , 𝑲+F
P , and 𝑽+FP  are Query, Key, and Value matrices in the t-th head 

of the row attention layer in the 𝑘-th block, respectively, 𝑾+F
/P, 𝑾+F

0P, and 𝑾+F
2P are 

corresponding weight matrices.  

Then, the dot-product between 𝑸+FP  and 𝑲+F
P  is performed and then normalized 

by SoftMax function to generate a row attention weight matrix: 

     𝑾+F
RP = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(∑ 𝑸"1

2 [)]∙(𝑲"1
2 [)])3}4

/5'
ZA&/5

) ∈ 𝑅"×" , 𝑸+FP [𝑖], 𝑲+F
P [𝑖] 	 ∈ 𝑅"×(&/5)(S41) 

      𝑾+F
RP ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑾+F

RP , 𝑟) (S42) 

where 𝑾+F
RP is the attention weight matrix in the t-th head of the row attention layer in 

the 𝑘-th block and measures the correlation for each pair of columns in the masked 

MSA.  

Next, the row attention weight matrix 𝑾+F
RP is multiplied by the Value matrix 𝑽+FP  



to generate the corresponding row attention matrix: 

𝑨+FP = 𝑾+F
RP𝑽+FP = 𝑾+F

RP

⎣
⎢
⎢
⎡ 𝑽+F

P [1]
𝑽+FP [2]
…

𝑽+FP [𝑀]⎦
⎥
⎥
⎤
=

⎣
⎢
⎢
⎡𝑾+F

RP𝑽+FP [1]
𝑾+F

RP𝑽+FP [2]
…

𝑾+F
RP𝑽+FP [𝑀]⎦

⎥
⎥
⎤
∈ 𝑅A×"×\

$
)], 𝑽+FP [𝑖] ∈ 𝑅

"×\$)](S43) 

where 𝑨+FP  is the attention matrix in the t-th head of the row attention layer in the 𝑘-

th block.  

Finally, the outputs of all attention heads are concatenated as a new matrix, which is 

further fed to a linear unit: 

 𝑨+P = 𝑨+(P 𝑨+$P …𝑨+5P ∈ 𝑅A×"×& (S44) 

 𝑯+
P = 𝑨+P𝑾+

P + 𝒃+P =

⎣
⎢
⎢
⎡ 𝑨+

P[1]
𝑨+P[2]
…

𝑨+P[𝑀]⎦
⎥
⎥
⎤
𝑾+

P + 𝒃+P =

⎣
⎢
⎢
⎡ 𝑨+

P[1]𝑾+
P

𝑨+P[2]𝑾+
P

…
𝑨+P[𝑀]𝑾+

P⎦
⎥
⎥
⎤
+ 𝒃+P ∈ 𝑅A×"×& (S45) 

 𝑾+
P ∈ 𝑅&×& , 𝑨+P[𝑖] ∈ 𝑅"×&   

where 𝑯+
P in the output matrix of row attention layer in the 𝑘-th attention block (See 

Eq. S27), and 𝑾+
P and 𝒃+P are weight matrix and bias in the linear unit, respectively.  

(b) Column attention 

Each column attention layer consists of 𝑚 attention heads and a linear unit. In each 

attention head, the input matrix is multiplied by three weight matrices to generate the 

corresponding Query, Key, and Value matrices. 

 𝑸+FD = 𝑭+O𝑾+F
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      𝑲+F
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where 𝑭+O is the input matrix of column attention layer in the 𝑘-th self-attention block 

(see Eq. S31), 𝑸+FD , 𝑲+F
D , and 𝑽+FD  are Query, Key, and Value matrices in the t-th head 



of column attention layer in the 𝑘-th block, respectively, 𝑾+F
/D , 𝑾+F

0D , and 𝑾+F
2D  are 

corresponding weight metrices. 

Then, the dot-product between 𝑸+FD  and 𝑲+F
D  is performed and then normalized 

by SoftMax function to generate an attention weight matrix: 

      𝑾+F
RD = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 �𝑸"1

6 (𝑲"1
6 )3

Z&/5
� ∈ 𝑅A×"×A (S49) 

      𝑾+F
RD ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑾+F

RD , 𝑟) (S50) 

      𝑸!"# (𝑲!"
# )$ = &𝑸!"# [: , 1, : ]	𝑸!"# [: , 2, ∶] 	…𝑸!"# [: , 𝐿, ∶]1 ∙ &𝑲!"

# [: , 1, : ]	𝑲!"
# [: , 2, ∶]	…𝑲!"

# [: , 𝐿, ∶]1
$
=

3𝑸!"# [: , 1, : ] ∙ 𝑲!"
# [: , 1, : ]$	𝑸!"# [: , 2, : ] ∙ 𝑲!"

# [: , 2, : ]$ …𝑸!"# [: , 𝐿, : ] ∙ 𝑲!"
# [: , 𝐿, : ]$4 ∈ 𝑅𝑀×𝐿×𝑀 (S51) 

𝑸+FD [: , 𝑗, : ], 𝑲+F
D [: , 𝑗, : ] ∈ 𝑅A×\

&
5], 𝑸+FD [: , 𝑗, : ] ∙ 𝑲+F

D [: , 𝑗, : ]1 ∈ 𝑅A×A 

where 𝑾+F
RD  is the attention weight matrix in the t-th head of column attention layer in 

the 𝑘-th block, and 𝑾+F
RD[: , 𝑗, : ] measures the correlation for each pair of alignments 

at the 𝑗-th position.  

Next, the column attention weight matrix 𝑾+F
𝐴𝐶 is multiplied by Value matrix 𝑽+FD  

to generate the corresponding column attention matrix: 

𝑨!"# = 𝑾!"
%#𝑽!"# = &𝑾!"

%#[: , 1, : ]	𝑾!"
%#[: , 2, ∶]	…𝑾!"

%#[: , 𝐿, ∶]1 ∙ &𝑽!"# [: , 1, : ]	𝑽!"# [: , 2, ∶]	…𝑽!"# [: , 𝐿, ∶]1=&𝑾!"
%#[: , 1, : ] ∙

𝑽!"# [: , 1, : ]		𝑾!"
%#[: , 2, ∶] ∙ 𝑽!"# [: , 2, ∶] 		…𝑾!"

%#[: , 𝐿, ∶] ∙ 𝑽!"# [: , 𝐿, ∶]1 ∈ 𝑅
𝑀×𝐿×(𝐷𝑚) (S52) 

𝑾+F
RD[: , 𝑗, : ] ∈ 𝑅A×A , 𝑽+FD [: , 𝑗, ∶] ∈ 𝑅

A×(&5),𝑾+F
RD[: , 𝑗, ∶] ∙ 𝑽+FD [: , 𝑗, ∶] ∈ 𝑅

A×(&5) 

where 𝑨+FD  is the attention matrix in the t-th head of column attention layer in the 𝑘-

th block.  

Finally, the outputs of all attention heads are concatenated as a new matrix, which is 

further fed to a linear unit: 

 𝑨+D = 𝑨+(D 𝑨+$D …𝑨+5D ∈ 𝑅A×"×& (S53) 

 𝑭+D = 𝑨+D𝑾+
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 𝑾+
D ∈ 𝑅&×& , 𝑨+D[𝑖] ∈ 𝑅"×&   

where 𝑭+D  in the output matrix of column attention layer in the 𝑘-th attention block, 

(See Eq. S31), and 𝑾+
D  and 𝒃+D  are weight matrix and bias in the linear unit, 

respectively. 



(c) Feed-forward network 

      𝑻+Q = 𝑔𝑒𝑙𝑢(𝑼+O𝑾+
( + 𝒃+() ∈ 𝑅A×"×&' (S55) 

      𝑻+Q ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑻+Q , 𝑟) (S56) 
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      𝑼+O[𝑖] ∈ 𝑅"×& ,𝑾+
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where 𝑼+O and 𝑼+Q are the input and output matrices of the feed-forward network in 

the 𝑘-th self-attention block, respectively, (see Eq. S35), 𝑾+
(  and 𝑾+

$  are weight 

matrices, 𝒃+(  and 𝒃+$  are bias, and ∅(𝑥)	is the integral of Gaussian Distribution for 

𝑥. 

F. Output layer    

The output of the last self-attention block is fed to a fully connected layer with SoftMax 

function to generate a probability matrix: 
 𝑷 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑯`-(𝑾a + 𝒃a) ∈ 𝑅A×"×D)-.	 (S61) 

																						𝑯`-(𝑾a =

⎣
⎢
⎢
⎡𝑯`-([1]𝑾a

𝑯`-([2]𝑾a

…
𝑯`-([𝑀]𝑾a⎦

⎥
⎥
⎤
, 𝑯`-([𝑖] ∈ 𝑅"×&	,𝑾a ∈ 𝑅&×D)-.		 (S62) 

where 𝑯`-( is the outputted embedding matrix in the 𝑁-th self-attention block, 𝑾a 

and 𝒃a  are weight matrix and bias, respectively, and the 𝑷(𝑖, 𝑗, 𝑐)  indicates the 

probability that the 𝑗-th position of the 𝑖-th sequence in the masked MSA is predicted 

as the 𝑐-th type of amino acid. 

G. Loss function 

For an individual MSA, the loss function is designed as: 

 𝐿𝑜𝑠𝑠59E =
(
A
∙ ∑ { (

|5E9+())|
∙ ∑ −𝑙𝑜𝑔𝑷),.,C(),.).∈5E9+()) }A

)c(  (S63) 

where 𝑀 is the number of alignments, 𝑚𝑎𝑠𝑘(𝑖) is a set of masking positions in the 



𝑖-th sequence, |𝑚𝑎𝑠𝑘(𝑖)| is the number of elements in 𝑚𝑎𝑠𝑘(𝑖), 𝑐(𝑖, 𝑗) is the type 

index of amino acid for the	 𝑗-th position in the 𝑖-th sequence before masking, and -

𝑙𝑜𝑔𝑷),.,C(),.) is the negative log-likelihood of the true amino acid at the	 𝑗-th position 

in the 𝑖-th sequence under the condition of masking.  

 
Text S4. p-value calculation between EPE and the other six feature embeddings   

We select the two-sided Student’s t-test [10] to calculate the p-values between EPE and 

the other six feature embeddings. Specifically, for each feature embedding, we fed it to 

the designed LSTM-attention network to train a DNA-binding site prediction model, 

which is then evaluated on the test dataset to calculate the corresponding evaluation 

index, such as MCC and AUROC values. To reduce the influence of randomness, we 

repeat this procedure 10 times to generate a group of 10 evaluation indices. Finally, the 

p-value between two feature embeddings is calculated on their groups of evaluation 

indices under the two-sided Student’s t-test. In this work, we use the Python package 

“scipy” to implement the Student's t-test to calculate the p-values. 
 
Text S5. Procedures for constructing PDNA-960 and PDNA-136 datasets    

Firstly, we downloaded 7345 protein-DNA complex structures which were released in 

the PDB database before October 15, 2023. In each complex structure, we removed the 

protein chains whose lengths are more than 1000 or less than 30. Then, the CD-HIT 

software [11] with a cut-off of 30% sequence identity was performed on all protein 

chains to remove the redundant chains. After this, we collected 1096 non-redundant 

protein chains, each of which was labeled with DNA-binding sites using the criteria of 

Critical Assessment of Structure Prediction (CASP) [2, 3] (see details in Text S1). 

Finally, the 136 chains released in the PDB after January 1, 2023, were used as the test 

dataset (i.e., PDNA-136, 2193 DNA-binding sites, and 47287 non-DNA-binding sites), 

while the remaining 960 chains were used as the training dataset (i.e., PDNA-960, 

18336 DNA-bindings sites, and 271988 non-DNA-binding sites).   
 
Text S6. Formulas for calculating average precision 
In the test dataset, the average precision is calculated as follows: 

 𝐴𝑃 = (
7
∙ ∑ 1'/

1'/-Q'/
7
)c(  (S64) 

where 𝑇𝑃) and 𝐹𝑃) are the numbers of true positives and false positives, respectively, 

in the i-th test protein, and 𝑛 is the number of test proteins. 



Supporting Figures 
 

 
Figure S1. The frequency distributions of 20 native amino acids among DNA-binding 

and non-DNA-binding sites for five benchmark datasets.   

  



 

Figure S2. The workflow of the ESM2 transformer.  

  



 
Figure S3. The workflow of the ESM-MSA transformer.  

 
 



 
Figure S4. The architectures of three ablation models



Supporting Tables 
 

Table S1. The performance of 5 DNA-binding site predictors  
on the PDNA-543 dataset over ten-fold cross-validation. 

Method Sen Spe Acc MCC AUROC 
TargetDNA (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) a 0.770 0.771 0.770 0.304 0.845 
DNAPred (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) b 0.771 0.785 0.784 0.318 0.861 
PredDBR (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) c 0.776 0.774 0.774 0.338 - 
ULDNA (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) 0.864 0.861 0.861 0.462 0.933 
TargetDNA (𝑆𝑝𝑒 ≈ 0.95) a 0.406 0.950 0.914 0.339 0.845 
DNAPred (𝑆𝑝𝑒 ≈ 0.95) b 0.449 0.950 0.917 0.373 0.861 
PredDBR (𝑆𝑝𝑒 ≈ 0.95) c 0.465 0.950 0.911 0.409 - 
Guan’s method (𝑆𝑝𝑒 ≈ 0.95) d 0.452 0.954 0.928 0.352 - 
ULDNA (𝑆𝑝𝑒 ≈ 0.95) 0.668 0.950 0.931 0.534 0.933 

a, b, c, d Results excerpted from TargetDNA [6], DNAPred [12], PredDBR [13], and 
Guan et al [14], respectively. “𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒” and “𝑆𝑝𝑒 ≈ 0.95” mean that the 
thresholds make 𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒 and “𝑆𝑝𝑒 ≈ 0.95”, respectively, on the PDNA-543 
dataset over ten-fold cross-validation. ‘-’ means the value is not available. Bold 
fonts highlight the best performer in each evaluation index. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table S2. The performance of 5 DNA-binding site predictors  
on the PDNA-335 dataset over ten-fold cross-validation. 

Method Sen Spe Acc MCC AUROC 
EC-RUS a 0.487 0.951 0.926 0.378 0.852 
TargetS b 0.417 0.945 0.899 0.362 0.824 
DNAPred c  0.543 0.917 0.886 0.390 0.856 
PredDBR d   0.426 0.953 0.910 0.390 - 
ULDNA  0.676 0.948 0.925 0.565 0.940 

a, b, c, d Results excerpted from EC-RUS [15], TargetS [16], 
DNAPred [12], and PredDBR [13], respectively. ‘-’ means 
the value is not available. Bold fonts highlight the best 
performer in each evaluation index. 

  



Table S3. The performance of 11 DNA-binding site predictors  
on the PDNA-316 dataset over ten-fold cross-validation. 

Method Sen Spe Acc MCC 
DBS-PRED a 0.530 0.760 0.750 0.170 
BindN a 0.540 0.800 0.780 0.210 
DNABindR a 0.660 0.740 0.730 0.230 
DISIS a 0.190 0.980 0.920 0.250 
DP-Bind a  0.690 0.790 0.780 0.290 
BindN-rf a  0.670 0.830 0.820 0.320 
MetaDBSite a 0.770 0.770 0.770 0.320 
TargetDNA (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) a 0.780 0.780 0.780 0.339 
TargetDNA (𝑆𝑝𝑒 ≈ 0.95) a 0.430 0.950 0.910 0.375 
DNAPred (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) b 0.800 0.799 0.799 0.370 
DNAPred (𝑆𝑝𝑒 ≈ 0.95) b 0.521 0.951 0.918 0.452 
PredDBR (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) c 0.815 0.807 0.808 0.398 
PredDBR (𝑆𝑝𝑒 ≈ 0.95) c 0.561 0.953 0.921 0.497 
PredDBR (threshold = 0.5) c 0.531 0.958 0.923 0.489 
ULDNA (𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒) 0.871 0.867 0.867 0.502 
ULDNA (𝑆𝑝𝑒 ≈ 0.95) 0.676 0.950 0.929 0.561 
ULDNA (threshold = 0.5) 0.449 0.983 0.942 0.526 

a, b, c Results excerpted from TargetDNA [6], DNAPred [12], and 
PredDBR [13], respectively. “𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒” and “𝑆𝑝𝑒 ≈ 0.95” 
mean that the thresholds make 𝑆𝑒𝑛 ≈ 𝑆𝑝𝑒 and “𝑆𝑝𝑒 ≈ 0.95”, 
respectively, on the PDNA-316 dataset over ten-fold cross-
validation. Bold fonts highlight the best performer in each 
evaluation index. 

 

 

Table S4. The p-values of MCC values between EPE and the other six feature embeddings on five 
benchmark datasets, where the base model is the designed LSTM-attention network. 

Dataset 
Feature embeddings from different protein language models  

(EPE, ESM2) (EPE, ProtTrans) (EPE, ESM-MSA) (EPE, PE) (EPE, EE) (EPE, EP) 
PDNA-543 1.96×10-06 2.96×10-12 3.43×10-12 1.01×10-08 4.25×10-04 9.55×10-04 
PDNA-335 3.89×10-10 7.74×10-16 1.40×10-11 6.08×10-08 1.25×10-03 6.64×10-06 
PDNA-316 1.37×10-09 1.13×10-10 1.15×10-14 1.57×10-07 4.34×10-06 9.42×10-03 
PDNA-41 8.22×10-08 9.25×10-07 5.21×10-09 2.75×10-04 1.97×10-03 5.99×10-02 
PDNA-52 5.82×10-05 6.39×10-04 8.78×10-09 1.12×10-03 1.91×10-02 3.14×10-02 

ESM2: the feature embedding from the ESM2 transformer; ProtTrans: the feature embedding from the ProtTrans 
transformer; ESM-MSA: the feature embedding from the ESM-MSA transformer; PE: the concatenation of two 
feature embeddings from the ProtTrans and ESM-MSA transformers; EE: the concatenation of two feature 
embeddings from the ESM2 and ESM-MSA transformers; EP: the concatenation of two feature embeddings from 
the ESM2 and ProtTrans transformers; EPE: the concatenation of three feature embeddings from the ESM2, 
ProtTrans, and ESM-MSA transformers.  



Table S5. The p-values of AUROC values between EPE and the other six feature embeddings on 
five benchmark datasets, where the base model is the designed LSTM-attention network. 

Dataset 
Feature embeddings from different protein language models 

(EPE, ESM2) (EPE, ProtTrans) (EPE, ESM-MSA) (EPE, PE) (EPE, EE) (EPE, EP) 
PDNA-543 1.14×10-08 5.02×10-10 5.84×10-08 1.06×10-05 3.40×10-02 9.89×10-05 
PDNA-335 1.76×10-10 8.12×10-13 1.45×10-12 1.38×10-11 2.67×10-05 4.52×10-07 
PDNA-316 1.77×10-08 8.99×10-11 1.77×10-12 1.31×10-08 6.42×10-05 1.85×10-07 
PDNA-41 2.28×10-07 1.37×10-03 5.84×10-05 7.17×10-02 3.48×10-01 2.37×10-02 
PDNA-52 3.77×10-03 2.40×10-04 4.47×10-06 9.24×10-04 6.44×10-03 2.07×10-01 

ESM2: the feature embedding from the ESM2 transformer; ProtTrans: the feature embedding from the ProtTrans 
transformer; ESM-MSA: the feature embedding from the ESM-MSA transformer; PE: the concatenation of two 
feature embeddings from the ProtTrans and ESM-MSA transformers; EE: the concatenation of two feature 
embeddings from the ESM2 and ESM-MSA transformers; EP: the concatenation of two feature embeddings from 
the ESM2 and ProtTrans transformers; EPE: the concatenation of three feature embeddings from the ESM2, 
ProtTrans, and ESM-MSA transformers.  
 

 

 

 

Table S6. The predicted and native DNA-binding sites of two representative proteins  
for five DNA-binding prediction methods. 

Protein Method Predicted DNA-binding sites 

2MXF_A 

LA-ESM2 2R 5K 7Y 10P 11H 18T 19K 20G 21G 22N 23H 24K 27K 30K 

LA-ProtTrans 1A 2R 3K 4V 5K 16I 17E 18T 19K 20G 21G 22N 23H 24K 25T 27K 

LA-ESM-MSA 2R 5K 7Y 18T 19K 20G 21G 22N 23H 24K 27K 30K 41W 

ULDNA 2R 3K 5K 7Y 18T 19K 20G 21G 22N 23H 24K 27K 30K 

PredDBR 2R 5K 7Y 8K 9N 18T 19K 20G 21G 23H 

Native DNA-binding sites 1A 2R 3K 5K 7Y 18T 19K 20G 21G 22N 23H 24K 26L 27K 30K 39E 

3ZQL_A 

LA-ESM2 12R 13R 14S 15A 16R 17S 18H 19R 20T 43S 44M 45R 54G 55T 56M 57S 59Y 60Y 
61Y 180R 183 M 

LA-ProtTrans 13R 14S 15A 16R 17S 18H 19R 20T 21L 43S 44M 45R 55T 56M 57S 59Y 60Y 61Y 
65K 

LA-ESM-MSA 12R 13R 14S 15A 16R 17S 18H 19R 20T 23R 43S 44M 45R 46R 53A 54G 55T 56M 
57S 59Y 60Y 61Y 64T 65K 

ULDNA 12R 13R 14S 15A 16R 17S 18H 19R 20T 43S 44M 45R 53A 54G 55T 56M 57S 59Y 
60Y 61Y 64T 65K 

PredDBR 1V 4W 6H 7P 12R 15A 18H 19R 22S 23R 43S 44M 45R 53A 54G 55T 56M 57S 59Y  
60Y 61Y 64T 65K 115W 117N 119H 124P 125N 126S 182W 187G 236D 

Native DNA-binding sites 12R 19R 43S 44M 45R 54G 55T 56M 57S 59Y 60Y 61Y 64T 65K 

Bold font means a DNA-binding site can be correctly predicted by a DNA-binding prediction method.  
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