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Abstract 
Efficient and accurate recognition of protein–DNA interactions is vital for understanding the molecular mechanisms of related biological 
processes and further guiding drug discovery. Although the current experimental protocols are the most precise way to determine 
protein–DNA binding sites, they tend to be labor-intensive and time-consuming. There is an immediate need to design efficient 
computational approaches for predicting DNA-binding sites. Here, we proposed ULDNA, a new deep-learning model, to deduce DNA-
binding sites from protein sequences. This model leverages an LSTM-attention architecture, embedded with three unsupervised 
language models that are pre-trained on large-scale sequences from multiple database sources. To prove its effectiveness, ULDNA was 
tested on 229 protein chains with experimental annotation of DNA-binding sites. Results from computational experiments revealed that 
ULDNA significantly improves the accuracy of DNA-binding site prediction in comparison with 17 state-of-the-art methods. In-depth 
data analyses showed that the major strength of ULDNA stems from employing three transformer language models. Specifically, these 
language models capture complementary feature embeddings with evolution diversity, in which the complex DNA-binding patterns are 
buried. Meanwhile, the specially crafted LSTM-attention network effectively decodes evolution diversity-based embeddings as DNA-
binding results at the residue level. Our findings demonstrated a new pipeline for predicting DNA-binding sites on a large scale with 
high accuracy from protein sequence alone. 
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INTRODUCTION 
Protein–DNA interactions are essential for a wide range of bio-
logical processes, such as gene expression, DNA replication, chro-
matin remodeling and signal transduction [1, 2]. Accurate recogni-
tion of protein–DNA binding sites is crucial for understanding the 
molecular mechanisms underlying various biological processes 
and thus advancing drug discovery [3–6]. Although the current 
biochemical experiments, such as X-ray crystallography [7] and  
Cryo-EM [8], are the most precise way for determining DNA-
binding sites, they tend to be labor-intensive and time-consuming. 
Consequently, a large number of sequenced proteins still lack 
DNA-binding annotations up to now. As of June 2023, the UniProt 
database [9] contained about 246 million protein sequences, yet 

less than 0.1% of these sequences had available experimental 
annotations of DNA-binding sites. There is an immediate need to 
design efficient computational approaches for predicting protein– 
DNA binding sites with high accuracy [10–12]. 

Current methods for DNA-binding site prediction can be cat-
egorized into two groups, which are driven by template detec-
tion and machine learning, respectively [13]. In the early stage, 
template detection-based methods were the predominant force 
in protein–DNA interaction prediction [14, 15]. Specifically, these 
methods locate DNA-binding sites by detecting the templates 
with similar sequences or structures to the query. For example, 
S-SITE [16] identifies sequence templates using PSI-BLAST align-
ment [17], while PreDNA [18] and DBD-Hunter [19] search tem-
plates through designing structure alignment algorithms. Other
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notable predictors in this field include PreDs [20], DBD-Threader 
[21], DR_bind [22] and Morozov’s method [23]. 

A common shortcoming of template detection-based methods 
is that their accuracy highly depends on the availability of tem-
plates with experimentally annotated DNA-binding sites. To over-
come this dependency, many machine learning-based methods 
have been developed. These methods involve extracting manu-
ally crafted features from protein sequences and structures (e.g. 
position-specific scoring matrix [24] and peptide backbone torsion 
angles [10]), which are further fed to machine learning models (e.g. 
support vector machine [25] and random forest [26]) to carry out 
DNA-binding site prediction, including classical examples such as 
DNAPred [13], TargetDNA [27], MetaDBSite [28] and TargetS [29]. 

Although machine learning-based methods achieved some 
progress, their prediction performance was still unsatisfactory. 
The main reason for this is the shortage of comprehensive and 
informative feature representations. Specifically, most of these 
methods are driven by simple and straightforward feature rep-
resentation methods, such as sequence composition coding and 
evolution conservation analysis, which fail to capture the complex 
patterns of protein–DNA interaction [30, 31]. To partially address 
this challenge, deep learning techniques have been employed in 
recently proposed DNA-binding site prediction methods, such 
as Guan’s method [32], PredDBR [33], iProDNA-CapsNet [34] 
and GraphBind [35]. The significant advantage of deep learning 
techniques over traditional machine learning methods is that 
they tend to derive more discriminative feature representations 
using complicated networks. However, the training efficiency 
of deep neural network models is frequently constrained by 
the limited experimental annotation data consisting of only 
thousands of protein–DNA complexes from the Protein Data Bank 
(PDB) [36]. As a result, most deep learning models cannot achieve 
optimal prediction performance. 

To relieve the problem arising from the inadequacy of 
experimentally annotated data, a viable solution is to employ 
unsupervised protein language models, which are pre-trained on 
a huge amount of amino acid sequences without DNA-binding 
annotations via deep learning techniques. Owing to thorough 
training and learning from extensive sequences, language models 
could capture crucial inter-residue correlations associated with 
DNA-binding patterns and encode them as discriminative feature 
embeddings. Meanwhile, several pre-trained language models 
have emerged in recent literature, such as TAPE [37] and  
SeqVec [38]. These methods are frequently employed through 
supervised deep neural networks in various bioinformatics 
tasks, including protein design [39, 40], function annotation [41, 
42], structure prediction [43, 44] and ligand-binding prediction 
[45, 46]. 

In this study, we develop a novelty deep learning model, 
ULDNA, to accurately predict protein–DNA binding sites through 
integrating unsupervised protein language models from multiple 
database sources with the designed LSTM-attention network. 
Specifically, we utilize three recently proposed language models 
(i.e. ESM2 [44], ProtTrans [47] and ESM-MSA [48]), separately pre-
trained on different large-scale sequence databases, to extract the 
complementary feature embeddings with evolution diversity, in 
which the complicated DNA-binding patterns are hidden. Then, 
an LSTM-attention architecture is specially crafted to effectively 
decode the evolution diversity-based feature embeddings as the 
confidence scores of DNA-binding sites at the residue level. 
ULDNA has been systematically tested on five protein–DNA 
binding site datasets. Results from computational experiments 
demonstrated that ULDNA significantly enhances the accuracy 

Table 1: Statistical summary of five protein-DNA binding site 
datasets 
Dataset (Max_L, Min_L, 

Avg_L)a 
(Num_DBS, 
Num_NDBS)b 

PDNA-543 (1937, 18, 266) (9549, 134,995) 
PDNA-41 (1517, 20, 360) (734, 14,021) 
PDNA-335 (1609, 51, 232) (6461, 71,320) 
PDNA-52 (1132, 54, 331) (973, 16,225) 
PDNA-316 (994, 36, 230) (5609, 67,109) 

aMax_L/Min_L/Avg_L: the maximal/minimal/average sequence length. 
bNum_DBS/Num_NDBS: the number of DNA-binding 
sites/non-DNA-binding sites. 

of DNA-binding site prediction compared to existing state-of-the-
art approaches. The ULDNA online server is freely accessible for 
academic use through the URL http://csbio.njust.edu.cn/bioinf/ 
uldna/. 

MATERIALS AND METHODS 
Benchmark datasets 
The proposed methods were evaluated by five protein–DNA bind-
ing site datasets, i.e. PDNA-543, PDNA-41, PDNA-335, PDNA-52 and 
PDNA-316. PDNA-543 and PDNA-41 were collected by Hu et al. [27]. 
The former is comprised of 543 protein chains with DNA-binding 
annotations deposited in the PDB database before 10 October 
2014, while the latter includes 41 DNA-binding protein chains that 
were deposited in the PDB after 10 October 2014. Here, the CD-
HIT software [49] has been used to eliminate redundant proteins 
both within and across datasets under a sequence identity cut-off 
of 30%. PDNA-335 and PDNA-52 were collected by Yu et al. [29]. 
These two datasets consist of 335 and 52 DNA-binding protein 
chains, respectively, which were released in the PDB before and 
after 10 March 2010. The sequence identity within each dataset 
and between different datasets is reduced to 40% through the 
PISCES software [50]. PDNA-316 was collected by Si et al. [28] and  
composed of 316 DNA-binding chains deposited in the PDB before 
31 December 2011, where the sequence identity of any two chains 
was reduced to 30% using the CD-HIT [49]. 

Table 1 presents a detailed summary of five datasets, where 
the definition of DNA-binding sites is described in Text S1 of 
Supporting Information (SI). Meanwhile, Figure S1 illustrates the 
frequencies of 20 native amino acids at DNA-binding and non-
DNA-binding sites in each dataset. 

The architecture of ULDNA 
As depicted in Figure 1, ULDNA is a deep learning model for 
predicting protein–DNA binding sites, where the input is a query 
sequence with amino acids and the output includes the confi-
dence scores of DNA-binding sites at the residue level. ULDNA 
comprises two procedures, i.e. (i) feature embedding extraction 
using multi-source language models and (ii) DNA-binding site 
prediction using the LSTM-attention network. 

Procedure I: feature embedding extraction using 
multi-source language models 
The input sequence is fed to ESM2 [44] and ProtTrans [47] trans-
formers to generate two feature embedding matrices with the 
scales of L×2560 and L×1024, respectively. Meanwhile, we search 
the multiple sequence alignment (MSA) of the input sequence 
from the UniClust30 database [51]. This MSA is subsequently fed 
to the ESM-MSA transformer [48] to generate another feature
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Figure 1. The workflow of ULDNA. 

embedding matrix with the scale of L × 768. Here,  L is the length 
of the input sequence, 2560, 1024 and 768 are preset hyper-
parameters in transformer models. ESM2, ProtTrans, and ESM-
MSA are both unsupervised attention networks with 36, 24 and 
12 layers, respectively, and trained on Uniref50 [52], UniClust30 
& Uniref50, and BFD (Big Fantastic Database) [53] & Uniref50 
databases, respectively, where ‘&’ means that two databases are 
both used to train a transformer. Each transformer has learned 
abundant evolution knowledge from millions of sequences and 
could encode the input sequence (or MSA) as a feature embedding 
matrix with evolution diversity. Considering that the evolution 
knowledge from multiple database sources could be complemen-
tary, we concatenate the above-mentioned three feature embed-
ding matrices from different transformer models as a hybrid 
embedding matrix with the scale of L × 4352. 

Procedure II: DNA-binding site prediction using the 
LSTM-attention network 
The hybrid feature embedding is fed to the designed LSTM-
attention network to generate a score vector with L dimensions, 
indicating the confidence scores of belonging to DNA-binding 
sites for all residues in the query sequence. In the LSTM-attention 
network, a BiLSTM layer and a self-attention layer are combined to 
further strengthen the relationship between evolution diversity-
based feature embeddings and DNA-binding patterns at the 
residue level to improve prediction accuracy. 

Unsupervised protein language models 
ESM2 transformer [44] is an unsupervised deep attention neural 
network with 36 layers, as depicted in Figure S2. Here, the input 
of ESM2 is a query sequence with amino acids, while the output 
is an evolution diversity-based feature embedding matrix. Each 
layer consists of 20 attention heads and a feed-forward network 
(FFN), where each head performs the scale dot-product operation 
to learn the evolution correlation between amino acids in the 
query sequence from an individual view. Meanwhile, the FFN 
fuses the evolution knowledge from all attention heads to capture 
the evolution diversity for the entire sequence. The ESM2 model 
with 3 billion parameters was trained on over 60 million proteins 
from the UniRef50 database, as carefully described in Text S2 of SI. 

ProtTrans transformer [47] shares a similar architecture to the 
ESM2. This model is composed of 24 attention layers, with each 
layer including 32 attention heads. The ProtTrans model with 3 

billion parameters was trained on over 45 million proteins from 
BFD and UniRef50 databases. 

ESM-MSA transformer [48] aims to capture the co-evolution 
knowledge for the input MSA and encode it as a feature embed-
ding matrix, as shown in Figure S3. ESM-MSA consists of 12 
attention blocks, with each block including one row-attention 
layer and one column-attention layer that separately learn the co-
evolution correlation between amino acids at the sequence and 
position level. The ESM-MSA model with 100 million parameters 
was trained on over 26 million MSAs from Unclust30 and UniRef50 
databases, with details in Text S3. 

LSTM-attention network 
The designed LSTM-attention network includes a BiLSTM layer, a 
self-attention layer, a fully connected layer, and an output layer, 
as shown in Figure 1. The BiLSTM includes a forward LSTM and 
a backward LSTM, which have the same architecture consisting 
of 256 cells with reverse propagation directions. Each LSTM cell is 
mainly composed of two states (i.e. cell state c and hidden state h) 
and three gates (i.e. forget gate f , input gate i and output gate o). 
The cell and hidden states are separately used to store and output 
the signals at the current time-step. The forget, input and output 
gates are used to control the ratios of incorporating the history 
signal, inputting the current signal and outputting the updated 
signal, respectively. Specifically, at time-step t (t ≤ L, L is the length 
of the input sequence), the above-mentioned states and gates are 
computed as follows: 

ht = ot · tanh (ct) (1) 

ct = ft · ct−1 + it · c′
t (2) 

c′
t = tanh

(
wc · [ht−1, xt] + bc

)
(3) 

ot = σ
(
wo · [ht−1, xt] + bo

)
(4) 

ft = σ
(
wf · [ht−1, xt] + bf

)
(5) 

it = σ
(
wi · [ht−1, xt] + bi

)
(6) 

where ct−1 and ht−1 are cell state and hidden state, respectively, at 
the time-step t−1, xt is the input at the time-step t (i.e. the feature 
embedding vector with 4352 dimensions of the tth residue in the 
query sequence for DNA-binding prediction), w∗ is the weight, b∗ is
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the bias, [, ] is concatenation operation between two vectors and 
σ (·) is the Sigmoid function. The output of the BiLSTM layer is 
represented as a L×512 matrix through concatenating the hidden 
states in all LSTM cells at all time-steps. 

The self-attention layer consists of 10 attention heads, each of 
which performs the scale dot-product attention as follows: 

Ai = SoftMax
(
MQ 

i · (
MK 

i

)T 
/
√

di

)
· MV 

i (7) 

MQ 
i = H · WQ 

i , MK 
i = H · WK 

i , MV 
i = H · WV 

i (8) 

where H is the output matrix by the BiLSTM; Ai is an attention 
matrix in the ith attention head; MQ 

i , MK 
i and MV 

i are Query, Key and 
Value matrices with the scale of 512 × 64, respectively; MQ 

i · MK 
i is 

an L×Lweight matrix measuring the position-correlation of amino 
acid pairs in the query; and di is a scale factor. 

The attention matrices in all 10 heads are concatenated and 
then inputted into the fully connected layer containing 1024 
neurons, followed by an output layer with one neuron: 

A = A1A2 . . .  A10 (9) 

F = Relu
(
Wa · A + ba

)
(10) 

s = σ
(
Ws · F + bs

)
(11) 

where Relu (·) is the linear rectification function and s is a score 
vector with L dimensions, indicating the confidence scores of 
belonging to DNA-binding sites for all residues in the query 
sequence. 

Loss function 
We use the cross-entropy loss [54] as the training loss of ULDNA: 

Loss = 
1 
L 

· 
L∑

i=1

(
yi · log (si) +

(
1 − yi

) · log (1 − si)
)

(12) 

where si is the confidence score of belonging to the DNA-binding 
site at the ith residue in the query sequence; yi = 1, if  the  
ith residue is a DNA-binding site annotated by experimental 
protocols; otherwise, yi = 0. The training loss is minimized to 
optimize the hyper-parameters of the ULDNA model via the Adam 
optimization algorithm [55], where the learning rate, dropout rate 
and batch size are set to be 0.001, 0.2 and 1, respectively. 

Implementation details 
The five benchmark datasets were constructed by three individual 
works [27–29], leading to different definitions of protein–DNA 
binding sites (see details in Text S1 of SI). Therefore, we should 
use the datasets with the same definition of DNA-binding sites 
for training and testing the proposed ULDNA model. Specifi-
cally, we separately used PDNA-543 and PDNA-335 datasets to 
train models, which were then tested on PDNA-41 and PDNA-
52, respectively, under independent validation. Moreover, there is 
no overlap between the two test datasets, because the release 
dates of proteins in the PDNA-52 are both earlier than those of 
proteins in the PDNA-41 (see details in the section of ‘Benchmark 
datasets’). The hyper-parameters and thresholds of the ULDNA 
model were determined on the corresponding training dataset 
under 10-fold cross-validation. In addition, the PDNA-316 dataset 
was used to further evaluate the performance of ULDNA over 10-
fold cross-validation. 

In the 10-fold cross-validation, the dataset was randomly split 
into 10-folds at the sequence level. Then, 9-folds were used to 
train the model, which was tested on the remaining 1-fold. This 
process was repeated 10 times, ensuring that each protein residue 
in the dataset was assigned a confidence score belonging to the 
DNA-binding site. Finally, an appropriate threshold was selected 
to evaluate the overall prediction performance of the model on 
the entire dataset under 10-fold cross-validation, where a protein 
residue was predicted as the DNA-binding site if its confidence 
score was higher than the selected threshold. To maximize the 
prediction performance of models over cross-validation, we opti-
mized the hyper-parameters of models, e.g. the number of atten-
tion heads and training epochs, using the grid search strategy. 

To reduce the influence of randomness, we repeatedly train the 
model 10 times and then use the average of the confidence scores 
outputted by 10 models as the final score for each protein residue. 

Evaluation indices 
Four indices are used to evaluate the performance of the proposed 
methods, including Sensitivity (Sen), Specificity (Spe), Accuracy 
(Acc) and Mathew’s Correlation Coefficient (MCC): 

Sen = TP/ (TP + FN) (13) 

Spe = TN/ (TN + FP) (14) 

Acc = (TP + TN) / (TP + FP + TN + FN) (15) 

MCC=(TP×TN−FP×FN) /
√

(TP + FP) (TN + FN) (TP + FN) (TN + FP) 
(16) 

where TP, TN, FP and FN separately stand for numbers of true 
positives, true negatives, false positives and false negatives. 

Since the four indices mentioned above depend on the preset 
threshold, choosing a suitable threshold is crucial for making fair 
comparisons between different models. In this study, the reported 
evaluation indices of the ULDNA model are determined by the 
threshold that yields the maximum MCC value on the training 
dataset under 10-fold cross-validation, unless stated otherwise. 
In addition, to evaluate the overall prediction performance of 
models, a threshold-independent index is utilized, i.e. the area 
under the receiver operating characteristic curve (AUROC) [56]. 

RESULTS AND DISCUSSION 
Comparison with existing protein–DNA binding 
site predictors 
To demonstrate the strong performance of the proposed ULDNA, 
we made a comparison with 12 existing popular DNA-binding 
site predictors, including BindN [57], ProteDNA [58], BindN+ 
[59], MetaDBSite [28], DP-Bind [60], DNABind [61], TargetDNA 
[27], iProDNA-CapsNet [34], DNAPred [13], Guan’s method [32], 
COACH [16] and  PredDBR [33], on the PDNA-41 test dataset under 
independent validation, as summarized in Table 2. 

It is observed that ULDNA obtains the highest MCC values 
among all 13 competing methods. Compared to the second best 
performer PredDBR (a recently proposed deep learning model), 
ULDNA gains 13.3% improvement of MCC values on average 
under three different thresholds. More importantly, four evalu-
ation indices of ULDNA are both higher than those of PredDBR 
under Sen ≈ Spe and Spe ≈ 0.95. Meanwhile, a similar trend but 
with more significant distinctions can be observed in comparison 
with other predictors. Taking DNAPred as an example, ULDNA
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Table 2: Performance comparisons between ULDNA and 12 competing predictors on the PDNA-41 test dataset under independent 
validation 
Method Sen Spe Acc MCC AUROC 

BindNa 0.456 0.809 0.792 0.143 -
ProteDNAa 0.048 0.998 0.951 0.160 -
BindN+ (Spe ≈ 0.95)a 0.241 0.951 0.916 0.178 -
BindN+ (Spe ≈ 0.85)a 0.508 0.854 0.837 0.213 -
MetaDBSitea 0.342 0.934 0.904 0.221 -
DP-Binda 0.617 0.824 0.814 0.241 -
DNABinda 0.702 0.803 0.798 0.264 -
TargetDNA (Sen ≈ Spe)a 0.602 0.858 0.845 0.269 -
TargetDNA (Spe ≈ 0.95)a 0.455 0.933 0.909 0.300 -
iProDNA-CapsNet (Sen ≈ Spe)b 0.753 0.753 0.753 0.245 -
iProDNA-CapsNet (Spe ≈ 0.95)b 0.422 0.949 0.924 0.315 -
DNAPred (Sen ≈ Spe)c 0.761 0.767 0.761 0.260 0.858 
DNAPred (Spe ≈ 0.95)c 0.447 0.949 0.924 0.337 0.858 
Guan’s methodd 0.476 0.964 0.949 0.357 -
COACHe 0.462 0.951 0.927 0.352 -
PredDBR (Sen ≈ Spe)e 0.764 0.758 0.758 0.264 -
PredDBR (Spe ≈ 0.95)e 0.431 0.958 0.931 0.351 -
PredDBR (threshold = 0.5)e 0.391 0.968 0.939 0.359 -
ULDNA (Sen ≈ Spe) 0.824 0.899 0.895 0.458 0.935 
ULDNA (Spe ≈ 0.95) 0.556 0.970 0.950 0.499 0.935 
ULDNA (threshold = 0.5) 0.271 0.994 0.958 0.417 0.935 

a, b, c, d, eResults excerpted from TargetDNA [29], iProDNA-CapsNet [36], DNAPred [14], Guan et al [34] and PredDBR [35 ], respectively; ‘Sen ≈ Spe’ and ‘Spe ≈ 0.95’ 
mean that the thresholds make Sen ≈ Spe and Spe ≈ 0.95, respectively, on the PDNA-543 training dataset over 10-fold cross-validation. ‘-’ means that the 
corresponding value is unavailable. 

Table 3: Performance comparisons between ULDNA and 6 competing predictors on the PDNA-52 test dataset under independent 
validation 
Method Sen Spe Acc MCC AUROC 

DNABRa 0.407 0.873 0.846 0.185 -
MetaDBSitea 0.580 0.764 0.752 0.192 -
TargetSa 0.413 0.965 0.933 0.377 0.836 
DNAPredb 0.518 0.949 0.925 0.405 0.876 
COACHc 0.599 0.935 0.916 0.420 -
PredDBRc 0.539 0.958 0.935 0.451 -
ULDNA 0.704 0.944 0.931 0.517 0.945 

a, b, cResults excerpted from TargetS [31], DNAPred [14] and PredDBR [35 ]. ‘-’ means that the corresponding value is unavailable. 

shares the improvements of 6.3, 13.2, 13.4, 19.8 and 7.7%, respec-
tively, on Sen, Spe, Acc, MCC and AUROC values under Sen ≈ Spe. 
It cannot escape from our notice that ProteDNA gains the highest 
Spe (0.998) but with the lowest Sen (0.048). This is due to that 
ProteDNA predicts too many false negatives. 

Table 3 illustrates the performance comparison among 
ULDNA, DNABR [31], MetaDBSite [28], TargetS [29], DNAPred [13], 
COACH [16] and  PredDBR [33] on the PDNA-52 test dataset under 
independent validation, where ULDNA achieves the highest MCC 
value among all control methods. Specifically, the improvements 
in MCC values between ULDNA and the other 6 predictors range 
from 6.6 to 33.2%. 

We further compare our method with all the above-mentioned 
methods as well as the other 4 competing methods, including EC-
RUS [62], DBS-PRED [63], DISIS [64] and BindN-rf [30], on three 
training datasets (i.e. PDNA-543, PDNA-335 and PDNA-316) under 
10-fold cross-validation, as listed in Tables S1, S2 and S3 of SI. 
Again, the proposed ULDNA outperforms all other methods. 

Contribution analysis of different protein 
language models 
The contributions of three employed protein language models, 
i.e. ESM2, ProtTrans and ESM-MSA, could be analyzed by further 

benchmarking the performance of the designed LSTM-attention 
network with seven different feature embeddings, respectively. 
These include three individual embeddings extracted from 
ESM2, ProtTrans and ESM-MSA, and four hybrid embeddings 
generated by ProtTrans + ESM-MSA (PE), ESM2 + ESM-MSA 
(EE), ESM2 + ProtTrans (EP) and ESM2 + ProtTrans + ESM-MSA 
(EPE = ULDNA). Here, ‘+’ indicates that we directly concatenate 
individual embeddings of different language models as a hybrid 
embedding. Figure 2 presents the performance comparison 
between seven feature embeddings across three training datasets 
(PDNA-543, PDNA-335 and PDNA-316) under 10-fold cross-
validation and two test datasets (PDNA-41 and PDNA-52) under 
independent validation, where the P-values of MCC and AUROC 
values between EPE and other six feature embeddings under 
two-sided Student’s t-test [65] are listed in Tables S4 and S5 and 
discussed in Text S4 of SI. 

It could be found that EPE achieves the best performance 
among the seven feature embeddings. From the view of MCC 
values, EPE gains the average improvements of 2.9, 4.3, 6.0, 2.2, 1.3 
and 1.0% on five datasets in comparison with ESM2, ProtTrans, 
ESM-MSA, PE, EE and EP, respectively, where the P-values are 
both below 0.05 for all the comparisons. With respect to AUROC 
values, EPE occupies the top-1 position on four out of five datasets.
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Figure 2. The MCC and AUROC values of seven feature embeddings on five benchmark datasets. 

Moreover, ESM2 shows the highest MCC and AUROC values among 
three individual embeddings; Meanwhile, the largest increase is 
caused by adding ESM2 to PE on each dataset. 

These data demonstrate the following two conclusions. 
First, three language models pre-trained on different sequence 
database sources are complementary for improving DNA-
binding site prediction. Second, ESM2 makes the most important 
contribution among the three language models. 

Ablation study 
We designed an ablation study to investigate the impact of algo-
rithmic advancements in the ULDNA on its enhanced perfor-
mance. Specifically, we began with a baseline model M0 and pro-
gressively incorporated ULDNA’s algorithmic elements to imple-
ment two improved models M1 and M2, where M2 is equivalent 
to ULDNA. The architectures of the three ablation models are 
depicted in Figure S4, with the following procedures. 

M0 
This model is built on the BiLSTM architecture, which is serially 
composed of a BiLSTM layer with 256 cells, a fully connected layer 
with 1024 neurons, and an output layer with one neuron. Mean-
while, the activation functions in the last two layers are employed 
by the linear rectification function and Sigmoid function, respec-
tively. Here, the input sequence is encoded as the one-hot coding 
matrix [66], which is then fed to the BiLSTM architecture to output 
the confidence scores of belonging to DNA-binding sites for all 
residues. In addition, the loss function is designed as the cross-
entropy loss, as shown in Equation (12). 

M1 
The one-hot coding matrix used in M0 is replaced by the hybrid 
feature embedding matrix concatenated by three individual 
embeddings from the ESM2, ProtTrans and ESM-MSA trans-
formers. This hybrid embedding is further fed to the BiLSTM 
architecture employed by M0 to output the confidence scores 
of DNA-binding sites. 

M2 (M2 = ULDNA) 
We add a self-attention layer consisting of 10 attention heads after 
the BiLSTM layer in M1. 

Figure 3 summarizes the performances of three ablation 
models across three training datasets under 10-fold cross-
validation and two test datasets under independent validation. In 

comparison with M0, M1 shows a great performance improve-
ment, with the MCC and AUROC values averagely rising by 
31.4 and 17.7%, respectively, on five benchmark datasets. This 
observation demonstrates the significant importance of protein 
language models for improving DNA-binding site prediction. The 
performance advantage of M1 over M0 is mainly attributed to 
that the employed transformers learn the abundant knowledge, 
highly associated with protein–DNA interaction patterns, from 
complementary sequence database sources. After adding the 
self-attention layer, M2 achieves an average increase of 0.7% 
in MCC values on five datasets in contrast to M1. Although 
the AUROC values of M2 are slightly lower than those of M1 
across the PDNA-543 and PDNA-41, they consistently increase 
on the other three datasets. These findings suggest that the 
inclusion of the self-attention layer helps improve the overall 
accuracy of DNA-binding site prediction, albeit to a lesser extent 
compared to the enhancements provided by protein language 
models. 

Testing on recently released PDB targets 
The proposed ULDNA was further compared with nine existing 
DNA-binding site prediction methods on 136 recently released 
DNA-binding protein chains from the PDB database, including DP-
Bind [60], TargetS [29], TargetDNA [27], DNAPred [13], GraphBind 
[35], NCBRPred [67], GraphSite [10], PredDBR [33] and iDRNA-ITF 
[68]. Specifically, we collected 1096 DNA-binding protein chains 
under a cut-off of 30% sequence identity, where the 960 chains 
and 136 chains separately released in the PDB before and after 1 
January 2023 were used as the training dataset (i.e. PDNA-960) and 
test dataset (i.e. PDNA-136), respectively, for the ULDNA model 
(see details in Text S5 of SI). Meanwhile, for the nine existing 
predictors, we downloaded the standalone software (or accessed 
the computation platforms) and implemented them on the PDNA-
136 dataset using the default settings. Moreover, considering the 
unbalanced distribution of DNA binding sites, we added a new 
evaluation index, i.e. average precision (AP, see details in Text S6), 
in all comparisons. 

Table 4 summarizes the prediction performance of ULDNA 
and 9 competing predictors on the PDNA-136 test dataset. It 
could be found that the proposed ULDNA achieves the best per-
formance among 10 predictors in terms of MCC, AUROC and 
AP values. Meanwhile, the Sen and Spe values of ULDNA are 
separately ranked 3 and 2. Compared to the second-best per-
former GraphSite learning DNA-binding patterns from feature 
embeddings of AlphaFold2 [69], our method achieves 6.1, 5.8 and
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Figure 3. The MCC and AUROC values of three ablation models on five benchmark datasets. 

Table 4: Performance comparisons between ULDNA and nine state-of-the-art predictors on the PDNA-136 test dataset under 
independent validation 

Method Sen Spe Acc MCC AP AUROC 

DP-Bind 0.622 0.787 0.779 0.199 0.144 -
TargetS 0.266 0.959 0.929 0.211 0.264 -
TargetDNA 0.455 0.907 0.886 0.238 0.209 0.802 
DNAPred 0.432 0.934 0.912 0.275 0.260 0.820 
GraphBind 0.628 0.925 0.911 0.379 0.303 0.898 
NCBRPred 0.372 0.947 0.921 0.261 0.203 0.799 
GraphSite 0.541 0.950 0.931 0.390 0.302 0.907 
PredDBR 0.351 0.947 0.920 0.246 0.234 0.775 
iDRNA-ITF 0.325 0.966 0.937 0.282 0.208 -
ULDNA 0.544 0.965 0.947 0.451 0.360 0.923 

For each competing predictor, we used the default threshold in the corresponding program to calculate evaluation indices. ‘-’ means that the AUROC value is 
unavailable due to that the corresponding predictor can only output the binary prediction results (‘0’ and ‘1’) rather than confidence scores. 

1.6% improvement for MCC, AP and AUROC values, respectively. 
Moreover, ULDNA is ranked number 1 for all seven evaluation 
indices in comparison with TargetS, TargetDNA, DNAPred, NCBR-
Pred, GraphSite and PredDBR. 

Case study 
To delve deeper into the effects of different DNA-binding site 
prediction approaches, we chose two proteins with PDB IDs of 
2MXF_A and 3ZQL_A from our test datasets as case examples. 
For each protein, we used four in-house methods (denoted as LA-
ESM2, LA-ProtTrans, LA-ESM-MSA and ULDNA) and a competing 
method (PredDBR [33]) to predict the corresponding DNA-binding 
sites. Four in-house methods use the same LSTM-attention net-
work with different feature embeddings from ESM2, ProtTrans, 
ESM-MSA and ESM2 + ProtTrans+ESM-MSA, respectively. Here, ‘+’ 
indicates that we directly concatenate individual embeddings of 
different language models as a hybrid embedding. Table 5 sum-
marizes the modeling results of two proteins for five DNA-binding 
site prediction methods, where the corresponding visualization 
results are illustrated in Figure 4. In addition, the predicted and 
native DNA-binding sites of two proteins by five methods are 
listed in Table S6 of SI. 

From the experiment data, we observed several interesting 
phenomena. First, the protein language models are critical to 
improve DNA-binding site prediction. Specifically, four in-house 

methods with pre-trained protein language models both show 
higher MCC values than the competing PredDBR without language 
models on two proteins. Taking ULDNA as an example, it gains the 
MCC increases by 29.7 and 14.9%, respectively, on 2MXF_A and 
3ZQL_A in comparison with PredDBR. 

Second, the combination of complementary protein language 
models can further increase the accuracy of ULDNA. In 2MXF_A, 
three in-house methods (i.e. LA-ESM2, LA-ProtTrans and LA-ESM-
MSA) with different language models detect a total of 14 true 
positives. This number surpasses the true positives predicted by 
each individual method, suggesting that three language mod-
els (i.e. ESM2, ProtTrans and ESM-MSA) extract complementary 
knowledge from multiple sequence databases. Meanwhile, the 
false positives predicted by one in-house method can be cor-
rected by the other two methods. For example, LA-ESM2 gen-
erates two false positives (10P and 11H), which are correctly 
predicted as non-DNA-binding sites by LA-ProtTrans and LA-ESM-
MSA. As a result, by taking the combination of three language 
models, ULDNA gains the most true positives without false pos-
itives among all methods. Occasionally, one in-house method 
could capture all the true positives identified by other methods. 
In the case of 3ZQL_A, LA-ESM-MSA encompasses all the true 
positives predicted by both LA-ESM2 and LA-ProtTrans. Despite 
this overlap, the overall accuracy of the final ULDNA is still 
improved by including all individual methods to reduce false 
positives.
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Table 5: The modeling results of five DNA-binding site prediction methods on two representative examples 

Method 2MXF_A 3ZQL_A 

TP FP TN FN MCC TP FP TN FN MCC 

LA-ESM2 12 2 29 4 0.710 12 9 213 2 0.678 
LA-ProtTrans 12 4 27 4 0.621 11 8 214 3 0.651 
LA-ESM-MSA 12 1 30 4 0.760 14 10 212 0 0.746 
ULDNA 13 0 31 3 0.861 14 8 214 0 0.783 
PredDBR 8 2 29 6 0.564 14 18 204 0 0.634 

Figure 4. Visualization of prediction results for two proteins (2MXF_A and 3ZQL_A) using five DNA-binding site prediction models: (A) LA-ESM2, (B) 
LA-ProtTrans, (C) LA-ESM-MSA, (D) ULDNA, (E) PredDBR. The atomic-level native structure of each protein is downloaded from the PDB database and 
then plotted as the cartoon picture using PyMOL software [70 ]. The color scheme is used as follows: DNA in orange, true positives in blue, false positives 
in red and false negatives in green. 

CONCLUSIONS 
In this work, a novelty deep learning model, ULDNA, is developed 
to predict DNA-binding sites from protein sequences through 
leveraging an LSTM-attention architecture embedded with pro-
tein language transformer models. The results from benchmark 
testing have shown that ULDNA significantly surpasses exist-
ing popular methods in the accuracy of predicting DNA-binding 
sites. The performance enhancement of ULDNA stems from two 
advancements. First, three transformer models pre-trained on 
multiple large-scare sequence databases could capture the com-
plementary feature embeddings with evolution diversity, which 
are highly associated with protein–DNA interactions. Second, the 
specifically designed LSTM-attention network further strength-
ens the relationship between evolution diversity-based feature 
embeddings and DNA-binding patterns to improve prediction 
accuracy. 

Although the prediction performance is promising, there 
remains substantial potential for further advancements. First, 
the serial feature concatenation strategy, currently utilized in the 
ULDNA, cannot perfectly deal with the redundant information 
among the feature embeddings from different transformers. Thus, 
designing a more advanced approach to feature fusion could help 
reduce the adverse effects arising from information redundancy 
in the future. Second, with the development of protein structure 

prediction models (e.g. AlphaFold2 [69] and  ESMFold [44]), the 
predicted structures will have the huge potential for improving 
DNA-binding site prediction. Resarches in these directions are 
currently ongoing. 

Key Points 
• Accurate recognition of protein–DNA binding sites 

is crucial for understanding the molecular mecha-
nisms underlying various biological processes and thus 
advancing drug discovery. This study has designed a 
novelty deep learning model ULDNA to accurately pre-
dict DNA-binding sites from protein sequences through 
integrating three unsupervised protein language models 
from multiple database sources with the designed LSTM-
attention network. 

• Results from computational experiments have revealed 
that ULDNA significantly surpasses existing popular 
methods in the accuracy of DNA-binding site predic-
tion. The major strength of ULDNA stems from employ-
ing three transformer language models that can effec-
tively capture complementary feature embeddings with 
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evolution diversity that are highly associated with com-
plicated DNA-binding patterns. 

• An online server for predicting protein–DNA binding 
sites is freely accessible through the URL http://csbio. 
njust.edu.cn/bioinf/uldna/. 
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com/bib. 
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