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Abstract

Accurately identifying protein functions is essential to understand life mechanisms and thus advance drug discovery. Although
biochemical experiments are the gold standard for determining protein functions, they are often time-consuming and labor-intensive.
Here, we proposed a novel composite deep-learning method, Multi-source Knowledge Fusion for Gene Ontology prediction (MKFGO),
to infer Gene Ontology (GO) attributes through integrating five complementary pipelines built on multi-source biological data.
MKFGO was rigorously benchmarked on 1522 nonredundant proteins, demonstrating superior performance over 12 state-of-the-
art function prediction methods. Comprehensive data analyses revealed that the major advantage of MKFGO lies in its two deep-
learning components, handcrafted feature representation-based GO prediction (HFRGO) and protein large language model (PLM)-
based GO prediction (PLMGO), which derive handcrafted features and PLM-based features, respectively, from protein sequences in
different biological views, with effective knowledge fusion at the decision-level. HFRGO leverages a long short-term memory (LSTM)-
attention network embedded with handcrafted features, in which the triplet loss-based guilt-by-association strategy is designed to
enhance the correlation between feature similarity and function similarity. PLMGO employs the PLM to capture feature embeddings
with discriminative functional patterns from sequences. Meanwhile, another three components provide complementary insights for
further improving prediction accuracy, driven by protein-protein interaction, GO term probability, and protein-coding gene sequence,
respectively. The source codes and models of MKFGO are freely available at https://github.com/yiheng-zhu/MKFGO.
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Introduction

Proteins play a fundamental role in various biological processes,
such as enzymatic activity, gene expression regulation, and sup-
porting cell structures [1, 2]. Accurate identification of protein
functions is vital to unravel life mechanisms and guide drug
design, with functions categorized into three aspects, i.e. molecu-
lar function (MF), biological process (BP), and cellular component
(CC), under the widely used Gene Ontology (GO) annotation [3].
While biochemical experiments are the gold standard for deter-
mining protein functions, they are often labor-intensive and may
yield incomplete results, leaving numerous sequenced proteins
without known functional annotations [4]. As of March 2025, the
UniProt database [5] housed ~253 million protein sequences, but
fewer than 0.1% were annotated with GO terms supported by
experimental evidence. To bridge this gap, there is an urgent need

to develop efficient computational methods for protein function
prediction [6, 7].

The existing function prediction methods can be divided
into three categories: template detection-, statistical machine
learning-, and deep learning-based methods. In the early
stage, template detection-based methods were predominant
in function prediction, focusing on identifying templates with
similar sequences or structures to the query for functional
inference [8]. For example, GoFDR [9] and Blast2GO [10] utilize
BLAST alignments [11] to search sequence templates, whereas
FINDSITE [12] and COFACTOR [8] employ TM-align [13] to detect
structure templates.

An inherent drawback of template detection-based methods is
that their prediction accuracy heavily depends on the availability
and quality of functional templates. To eliminate this dependence,
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statistical machine learning algorithms have been employed as an
alternative. This could be implemented by extracting handcrafted
feature representations (e.g. k-mer sequence encoding [14] and
position-specific scoring matrix [15]) from protein sequences,
which are then processed with statistical machine learning
algorithms (e.g. support vector machine [16] and random forest
[17]) to train function prediction models, exemplified by GOPred
[18], FFPred [19], and GOLabeler [20]. Although these methods
complement template detection methods, their prediction
accuracy is still insufficient [21]. The major reason is that the used
machine learning models fail to derive the deep-level functional
patterns buried in feature representations. To partly address
these issues, deep learning techniques have emerged in function
prediction [22].

The significant advantage of deep learning methods over sta-
tistical machine learning methods is that they can capture the
sophisticated functional patterns from handcrafted feature rep-
resentations through designing complex neural networks, such
as convolutional neural network (CNN) [23] and long short-term
memory (LSTM) [24], with the classical examples of DeepGO [22],
DeepGOCNN ([25], TALE [26], DeepGOZero [27], FFPred-GAN [28],
and AnnoPRO [29]. Moreover, the protein large language mod-
els (PLMs), such as ESM2 [30] and ProtTrans [31], are increas-
ingly demonstrating their potential in the feature representa-
tion through encoding the primary sequences as the discrimi-
native feature embeddings [32]. Since the PLMs are pretrained
on networks with dozens of layers over hundreds of millions of
sequences, they learn abundant evolution knowledge related to
function, resulting in the encoded feature embeddings containing
distinctive functional patterns. Therefore, several function predic-
tion methods directly employ PLMs to generate feature embed-
dings instead of traditional handcrafted features, which are then
fed to neural networks for implementing prediction models. The
typical examples include ATGO [33], GAT-GO [34], SPROF-GO [35],
TransFew [36], DeepFRI [37], and DeepGO-SE [38].

Despite the great progress, challenges remain. First, the above-
mentioned works have entirely replaced handcrafted features
with PLM-based features, potentially leading to the incomplete
capture of functional patterns. The underlying reason is that PLM-
based features focus solely on the view of protein sequence evolu-
tion, whereas handcrafted features can extract function-related
knowledge from other complementary views, such as protein
secondary structure and family. Thus, the effective fusion of the
knowledge from handcrafted and PLM-based features remains a
significant challenge. Second, most existing function prediction
methods derive knowledge from the sequence alone, overlooking
other crucial biological data sources [e.g. protein-protein inter-
action (PPI) network and protein-coding gene] that contain com-
plementary knowledge. Therefore, another challenge lies in the
integration of multiple biological data sources to further improve
prediction performance.

In this work, we proposed a composite protein function
prediction method, Multi-source Knowledge Fusion for Gene
Ontology prediction (MKFGO), through integrating five comple-
mentary pipelines built on multi-source biological data. First,
we designed two deep learning-based GO prediction pipelines,
handcrafted feature representation-based GO prediction (HFRGO)
and protein large language model (PLM)-based GO prediction
(PLMGO), embedded with handcrafted and PLM-based features,
respectively, from amino acid sequences. HFRGO leverages the
LSTM-attention architecture with three powerful handcrafted
features from the views of sequence conversion, secondary
structure, and family domain, respectively. Meanwhile, the triplet

loss-based guilt-by-association strategy [33] is employed to
enhance the correlation between sequence feature similarity and
function similarity. PLMGO employs the ProtTrans transformer
[31] to encode the sequences as feature embeddings with
functional patterns from the view of evolution diversity, which
are then decoded by the fully connected neural network.
Second, we implemented another three pipelines, driven by PPI
inference, naive probability, and coding-gene sequence. Finally, a
composite model was derived by incorporating the outputs of five
complementary pipelines. Computational experiments on 1522
nonredundant test proteins have demonstrated two points. First,
HFRGO and PLMGO complement each other, with decision-level
knowledge fusion outperforming feature-level fusion. Second,
the composite MKFGO exhibits a significant advantage in the
accurate prediction of GO terms over the existing state-of-the-art
approaches, as each of its five components contributes to the
overall performance improvement. The source codes and models
of MKFGO are freely available at https://github.com/yiheng-zhu/
MKFGO.

Materials and methods
Benchmark datasets

We employed an approach closely mirroring the Critical Assess-
ment of protein Function Annotation (CAFA) experiment to con-
struct benchmark datasets. Specifically, we downloaded all pro-
tein sequences from the UniProt database [5] with the correspond-
ing functional annotations from the Gene Ontology Annotation
database [39]. Then, we filtered out proteins by only selecting
those that have been manually reviewed with the available func-
tion annotations by at least one of the eight experimental evi-
dence codes, namely, EXP, IDA, IPI, IMP, IGI, IEP, TAS, and IC [40,
41]. After this, we collected 80 653 high-quality proteins, which
could be further split into training, validation, and test datasets.
The 1522 proteins were selected as the test datasets, which were
released in the UniProt database after 1 July 2021, and the 974 pro-
teins as the validation datasets, released in the UniProt from 1 July
2020 to 30 June 2021. The remaining proteins have been filtered
out by removing the redundant proteins aligned with test and val-
idation proteins using CD-HIT [42] software with a sequence iden-
tity cut-off of 30%, yielding a training dataset of 70 712 proteins.

The number of entries in each dataset across different GO
categories is presented in Table S1 of the Supporting Information
(SI). The training, validation, and test datasets were used inde-
pendently to train models, optimize the models’ parameters, and
assess the models’ performance.

The architecture of Multi-source Knowledge
Fusion for Gene Ontology prediction

As depicted in Fig. 1, MKFGO is a composite deep-learning model
for protein function prediction, where the input is a protein
sequence with UniProt ID, and the output includes the confi-
dence scores of predicted functional terms for three GO aspects.
This model consists of five pipelines, i.e. (A) HFRGO, (B) PLMGO,
(C) PPI-based GO prediction (PPIGO), (D) naive-based GO predic-
tion (NAIGO), and (E) DNA language model-based GO prediction
(DLMGO), which are driven by the protein sequence (A and B),
interaction network (C), GO term probability (D), and coding-gene
sequence (E), respectively. The input sequence is independently
fed to five pipelines to generate the confidence scores of GO terms,
which are further ensembled by the neural network to output the
Consensus scores.
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Figure 1. The flowchart of MKFGO.

Handcrafted feature representation-based Gene Ontology
prediction
Feature representation

For the query sequence with the length L, we use PSI-BLAST
[11], SPOT-1D-LM [43], and InterProScan [44] programs to extract
the corresponding feature representations, i.e. position-specific
scoring matrix (PSSM), secondary structure coding matrix (SSCM),
and family domain-based binary vector (FDBV), with the scale of
L x 20, L x 8, and 45899-D, respectively, see details in Text S1 of
the SI.

LSTM-attention network-based function prediction

The PSSM and SSCM are concatenated and then fed to an LSTM-
attention module consisting of a BiLSTM layer with 128 cells, a
self-attention layer with eight heads, an average-pooling layer,
and a fully connected layer (FCL;) with 1024 neurons. The output
of this module is concatenated with the FDBV and then processed
by another fully connected layer (FCL,) with 1024 neurons to out-
put a feature embedding vector, as carefully described in Text S2
of the SIL

The feature embedding vector is further fed to the output layer
with a Sigmoid activation function to generate a confidence score
vector s, for predicted GO terms. Meanwhile, the triplet loss—
based guilt-by-association (TL-GBA) strategy [33] is performed

on this embedding vector to produce another confidence score
vector sgp,. Finally, two confidence score vectors are weightedly
combined to generate the final confidence score vector sy for the
HFRGO pipeline.

Triplet loss-based guilt-by-association strategy

For a query protein, we select the top K templates, which have the
highest sequence feature similarity with itself, from the training
dataset for function annotation:

K
I (GO)
Sgb (GO') = Wy @ ———
7 ! kzzll 25:1 Wk

W =1-(n—1)/K 1)

where GO is the j-th candidate GO term; I (GOj) = 1, if the k-th
template is associated with GO; in the experimental annotation;
otherwise, Iy (GOj) = 0; 1, is the rank of the k-th template in K
templates based on the feature similarity with query.

The feature similarity between the template and query is mea-
sured by the Euclidean distance of feature embedding vectors out-
putted by the FCL,. To improve the quality of selected templates,
we employ the triplet loss [45] to enhance the correlation between
sequence feature similarity and functional similarity:

Loss; = Ex~xmax (d(x, pos),,,. + dm — d(x, neg) 0) (2)

min’
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where x is a protein sequence in the training dataset X; dm
is a preset margin value; d(x,pos), .. (d(x,neg), . ) is the maxi-
mum (minimum) values of distances between x and all positive
(negative) partners which have the same (different) function to x.
Two proteins are defined as having the same function if their func-
tional similarity is higher than a preset threshold ¢, as carefully
described in Text S3. Minimizing this triplet loss helps ensure that
the selected templates exhibit both higher feature similarity and
functional similarity to the query.

Loss function

Considering that triplet loss is hardly converged in the training
stage, we have added the cross-entropy loss to form a composite
loss function [46-48]:

Loss = « e LosS; + Loss¢ (3)

Loss, = f% . % . Z:Z:{logssig (i,j) e I(i,))

+1og (1= su (1)) » (1= 1(3.)) } @

where o is a balanced parameter, m and n are the numbers
of training proteins and GO terms, respectively; sgj (i,j) is the
confidence score that the i-th training protein is associated with
the j-th GO term predicted by the output layer in LSTM-attention
network; and I(i,j) = 1 if i-th protein is associated with the j-th
term in the experimental annotation. This loss function could be
minimized to optimize the hyperparameters of the HFRGO using
the Adam optimization algorithm [49]. In addition, the values
of dm, ¢, @, and K for three GO aspects are listed in Table S2
of the SIL

Protein language model-based Gene Ontology prediction

The input sequence is fed to the pretrained protein language
model, i.e. ProtTrans [31], to extract the feature embedding matrix,
which is then averaged over the full sequence length to generate
the embedding vector with 1024 dimensions. This vector is further
processed by a fully connected layer with 1024 neurons and an
output layer to yield the confidence score vector sy, for GO terms.
The cross-entropy loss [see details in Equation (4)] is employed to
optimize the hyperparameters of the neural network. Here, we uti-
lize ProtT5-XL-UniRef50, a representative model in the ProtTrans
family and pretrained on over 45 million protein sequences from
the UniRef50 dataset. This model consists of 24 self-attention
layers, each of which is composed of 32 attention heads and a
multi-layer perceptron (MLP) with a hidden size of 1024, totaling
~3 billion parameters. Additional details about ProtTrans can be
found in reference [31].

Protein—protein interaction-based Gene Ontology prediction

The Blastp [11] program is utilized to hit a PPI entry P,, which
has the highest sequence identity to the query protein, against
the STRING database [S0]. For each PPI partner of P, the Blastp
is employed again with the e-value of 0.1 to search the corre-
sponding homologs from the training sequence dataset. These
homology proteins are used as templates to generate the confi-
dence score vector spy,for GO annotations, as carefully described
in Text S4.

Naive-based Gene Ontology prediction

The confidence score that the query is associated with a GO term
could be directly assigned by the frequency of this term in the

training dataset:
Snai (GO)') =N (GOJ‘) /NaII (5)

where N (GOJ-) and Ny are the number of proteins associated with
GO; and all proteins in the training dataset, respectively.

DNA language model-based Gene Ontology prediction

For the query protein, we download the DNA sequence of its
coding gene from the National Center for Biotechnology Infor-
mation (NCBI) [51] through mapping its UniProt ID to the Entrez
ID of the coding gene. This DNA sequence is fed to the pre-
trained DNA language model, i.e. Nucleotide-Transformer [52], to
capture the feature embeddings, then further processed by the
fully connected neural network to output the confidence score
vector sy, of predicted GO terms, using the same architecture in
the PLMGO pipeline. Here, we employed two model versions of
Nucleotide-Transformer, namely, NT-Multispecies (2.5B) and NT-
1000G (2.5B), each pretrained on >100 billion nucleotides and
capable of encoding the DNA sequence as an embedding vector
with 2560-D. These two models share the same architecture, ie. a
transformer encoder with 32 self-attention layers, each compris-
ing 20 attention heads and an MLP with 2560 hidden units, with a
total of ~250 million parameters (see details in reference [52]).

Ensemble for different Gene Ontology prediction methods

The confidence score vectors of five GO prediction pipelines are
concatenated as a confidence score matrix Se;; € R™°, where n is
the number of the candidate GO terms. This matrix is then fed to
a fully connected network layer with Ny neurons, followed by an
output layer with one neuron to output the consensus confidence
score vector s, € R". Here, the values of Ny are set to 256, 256,
and 32 for MF, BP, and CC aspects, respectively. The implemen-
tation details of the ensemble strategy for integrating different
GO prediction methods are provided in Text S5, with a schematic
diagram shown in Fig. S1. Finally, a hierarchical postprocessing
procedure is performed on these confidence scores to ensure that
the confidence score of a GO term is larger than or equal to those
of all its children, as carefully described in Text S6.

Implementation and settings for training

All MKFGO experiments were performed on the Linux machine,
with its three deep-learning components (i.e. HFRGO, PLMGO, and
DLMGO) implemented using the TensorFlow framework on an
NVIDIA GeForce RTX 4090 GPU. The Adam optimizer [49] with
a learning rate of 0.0001 was used to train HFRGO, PLMGO, and
DLMGO models with batch sizes of 64, 256, and 256, respectively,
over 50, 200, and 200 epochs, with the corresponding training
time, inference time, memory usage, and model storage listed
in Table S3 of the SI. The time complexity and the number of
hyperparameters for three deep learning models are summarized
in Table S4.

Evaluation metrics

Following the rules of CAFA competitions, we use three metrics
to evaluate our models, i.e. maximum Fj-score (Fmax), minimum
semantic distance (Smin), and area under the precision-recall
curve (AUPRC) [53, 54]. Fmax is the highest F-score achieved across
all confidence thresholds, offering a single measure of the best
trade-off between precision and recall. Sy, measures the dis-
crepancy between predicted and true GO terms by calculating
the semantic distance in the GO hierarchy structure. The AUPRC
assesses a model’s overall performance in the trade-off between
precision and recall over all thresholds. The detailed calculations
of these metrics can be found in Text S7.
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Table 1. The overall performance of 16 function prediction methods on all 1522 test proteins

Method Frmax Smin AUPRC Coveragef
MF BP CC MF BP CC MF BP CC MF BP CC
Single method Blast-KNN#d 0.642 0.397 0.485 7.77 24.90 8.59 0.346 0.220 0.259 0.832 0.803 0.717
FunFams? 4 0.483 0.311 0.387 9.87 27.24 9.02 0.298 0.141 0.200 0.631 0.599 0.532
PPIGO®d 0.329 0.273 0.461 11.81 26.74 8.43 0.141 0.126 0.253 0.515 0.558 0.645
DeepGOCNNP-© 0.430 0.296 0.497 11.01 26.67 9.45 0.369 0.204 0.493 1.000 1.000 1.000
TALEP-d 0.457 0.313 0.526 11.19 25.88 8.77 0.397 0.222 0.534 1.000 1.000 1.000
DeepGOZero P-4 0.677 0.396 0.540 7.53 24.86 9.46 0.674 0.319 0.521 1.000 1.000 1.000
AnnoPROP-¢ 0.504 0.365 0.535 9.63 25.36 8.67 0.366 0.267 0.504 1.000 1.000 1.000
HFRGOP 0.682 0.412 0.580 7.23 2391 8.14 0.630 0.340 0.539 1.000 1.000 1.000
ATGOCSd 0.686 0.424 0.607 7.34 23.99 7.87 0.676 0.361 0.625 1.000 1.000 1.000
DeepGO-SECvd 0.669 0.411 0.573 7.67 24.48 9.44 0.662 0.351 0.600 1.000 1.000 1.000
DPFunced 0.681 0.403 0.583 7.68 24.70 8.08 0.681 0.350 0.585 1.000 1.000 1.000
PLMGO® 0.680 0.424 0.628 7.58 23.95 7.57 0.621 0.355 0.571 1.000 1.000 1.000
Composite method DeepGOPlusd 0.660 0.402 0.574 7.78 24.92 8.56 0.620 0.311 0.517 1.000 1.000 1.000
TALE+4 0.640 0.401 0.581 8.04 24.91 8.37 0.617 0.318 0.550 1.000 1.000 1.000
ATGO+4 0.693 0.430 0.607 7.22 23.88 8.11 0.670 0.371 0.617 1.000 1.000 1.000
MKFGO 0.710 0.459 0.639 6.97 23.08 7.38 0.716 0.400 0.668 1.000 1.000 1.000

Bold fonts highlight the best performer in each category. 2Template detection-based methods. PDeep learning-based methods with handcrafted feature
representations. “Deep learning-based methods with PLM-based feature representations. 9The prediction models are re-trained on our training dataset using the

author’s source codes. ®The prediction models are directly downloaded from the author’s web platforms. fCoverage is the proportion of the number of test
proteins with available prediction scores divided by the total number of test proteins.

Results and discussions

Overall performance of Multi-source Knowledge
Fusion for Gene Ontology prediction

We benchmarked the proposed methods with 12 state-of-the-art
function prediction methods on all 1522 test proteins, including
nine single methods (Blast-KNN [20], FunFams [55], DeepGOCNN
[25], TALE [26], DeepGOZero [27], ATGO [33], AnnoPRO [29],
DeepGO-SE [38], and DPFunc [56]) and three composite methods
(DeepGOPlus [25], TALE+ [26], and ATGO+ [33]). These single
methods could be categorized into three groups: (i) Blast-
KNN and FunFams are template detection-based methods,
leveraging sequence homology alignment and protein family
search separately; (2) DeepGOCNN, TALE, DeepGOZero, and
AnnoPRO are deep learning-based methods with handcrafted
feature representations; (3) ATGO, DeepGO-SE, and DPFunc are
deep learning methods with PLM-based feature representations.
Moreover, DeepGOPlus, TALE+, and ATGO+ are the composite
versions for DeepGOCNN, TALE, and ATGO, respectively, through
integrating Blast-KNN. Accordingly, our competing methods
include the composite MKFGO and its three component methods
(i.e. PPIGO, HFRGO, and PLMGO), each corresponding to one of the
above-mentioned three groups.

Table 1 summarizes the performance comparison between our
methods and 12 existing methods on 1522 test proteins. Overall,
the proposed MKFGO achieves the best performance among
all function prediction methods. In comparison to the second-
best performer, i.e. ATGO+, MKFGO gains 4.8%, 5.3% [= (/6.97—
7.22|/7.22 +23.08-23.88|/23.88 +|7.38-8.11|/8.11)/3x100%],  and
7.6% average improvement for Frmax, Smin, and AUPRC, respectively,
on three GO aspects. Moreover, the composite methods (i.e.
ATGO+, TALE+, and DeepGOPlus) all exhibit superior perfor-
mance compared to their deep-learning counterparts, as BLAST-
KNN provides complementary knowledge for function prediction.

Among all single methods, our PLMGO and HFRGO are ranked
4/1/1 and 2/3/4 for MF/BP/CC aspects, respectively. Moreover,
HFRGO outperforms all other deep learning methods that use
handcrafted feature representations. Taking DeepGOZero as an
example, our HFRGO beat it in eight out of nine evaluation
metrics, except for the AUPRC in the MF aspect. Importantly,

HFRGO consistently outperforms the DeepGO-SE, a PLM-based
deep learning method, in terms of Fpax and Smin values across
three GO aspects. It is undeniable that ATGO achieves the highest
prediction accuracy in MF aspects, likely because it utilizes PLM
(i.e. the ESM-1b transformer [57]) to extract feature embeddings
from three-level perspectives of sequence evolution, enriching
the knowledge related to molecular functions.

Furthermore, we observe that deep learning methods, par-
ticularly those employing PLMs, achieve significantly superior
performance than template detection-based methods. Part of the
reason is that such template detection methods cannot output
any prediction results for some test proteins that fail to match
available templates, leading to inferior performance in the overall
test dataset with low coverage, especially evident in FunFams and
PPIGO. Therefore, we conducted an additional benchmark of 16
function prediction methods on a subset of 515 test proteins, for
which predictions can be produced by all methods. As illustrated
in Table S5, a similar trend is observed, where our methods
outperform the control methods by a substantial margin. Mean-
while, BLAST-KNN exhibits noticeably higher prediction accuracy
over FunFams and PPIGO in both tests, indicating that sequence
homology provides a more reliable basis for protein function
inference than PPI and family similarity.

We further assessed the model performance using two
additional metrics commonly employed in multi-label prediction
tasks, i.e. information content-weighted area under the receiver
operating characteristic curve (ICW-AUROC) [58] and Hamming
loss [59], with the details in Text S8. The benchmark results of
16 GO prediction methods on 1522 test proteins concerning these
two metrics are summarized in Fig. S2. Again, MKFGO achieved
the best performance across both metrics, except for the ICW-
AUROC value in the MF aspect, where it ranked second with a
negligible margin behind the top performer.

Multi-source Knowledge Fusion for Gene
Ontology prediction shows great generality to
new species and non-homologous proteins
Despite the progress in function prediction, many deep learning
methods may exhibit reduced performance on proteins from new
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Figure 2. The performance comparison among 13 function prediction methods on the new species and nonhomology proteins across three GO aspects.
(A) The Fmax values on the 300 test proteins from 158 new species. (B) The Sy, values on the 300 new species proteins. (C) The Fmax values on the 305
non-homologous test proteins. (D) The Sy, values on the 305 non-homologous proteins.

species absent from their training data. To assess the generaliz-
ability of MKFGO to new species, we mapped each protein in our
dataset to its corresponding species and then gathered 300 test
proteins from 158 new species that were never observed in the
training dataset.

We further benchmarked the proposed MKFGO with 12
competing function prediction methods on these 300 new species
proteins, where the corresponding Fmax and Spmin values across all
GO aspects are shown in Fig. 2A and B. Meanwhile, the AUPRC
values of 13 methods are listed in Fig. S3. It could be found
that MKFGO achieves the best Fpax and Spi, values among all
methods. Compared to the second-best performer, i.e. DPFunc,
MKFGO gains an average improvement of 4.9% in Frax and 7.5%
in Smin, respectively, on three GO aspects. As for AUPRC, MKFGO
is ranked 2/4/1 for the MF/BP/CC aspect. Moreover, the AUPRC
gap between MKFGO and the top performer is minimal and
almost negligible on the MF/BP aspect. Additionally, the Fpax,
Smin, and AUPRC values of MKFGO for these 300 proteins in
Fig. 2A and B are largely consistent with those of the entire test
dataset in Table 1. These observations demonstrate that MKFGO
maintains its strong performance when modeling new species
proteins, highlighting the generalizability of its deep-learning
approaches.

Since the sequence-based function annotation is heavily
dependent on sequence homology, another challenge for deep
learning-based methods is the modeling of proteins without
sequence homology. In light of this, we further benchmarked
MKFGO with 11 competing methods on 305 test proteins that
cannot hit any sequence homologies in the training dataset

using BLAST search with an e-value of 0.01. Here, BLAST-KNN
was excluded because it cannot generate any predictions for
these test proteins. Fig. 2C and D summarizes the Fmax and Smin
values of 12 function prediction methods for three GO aspects
on 305 nonhomology test proteins, where the corresponding
AUPRC values are illustrated in Fig. S4. Overall, the performance
of all prediction methods for these nonhomology proteins in
Fig. 2C and D is significantly inferior to that for the whole
test dataset in Table 1. This observation further demonstrates
the importance of sequence homology in function prediction,
both for template detection and deep learning-based methods.
However, our MKFGO still outperforms the other 11 methods for
all evaluation metrics across three GO aspects, except for the
Fmax and AUPRC values on the MF aspect. Taking ATGO+ as a
reference, MKFGO achieves an improvement of 1.6%, 13.3%, and
3.9% on the Fpax and 3.2%, 3.4%, and 3.0% on the S, for MF, BP,
and CC aspects, respectively.

Contribution analysis for different Gene Ontology
prediction components

To analyze the contributions of five component methods
(i.e. HFRGO, PLMGO, PPIGO, NAIGO, and DLMGO) in MKFGO,
we individually remove each component from the MKFGO
to generate five reduced-composite methods, including PIND
(PLMGO + PPIGO 4+ NAIGO + DLMGO), HIND (HFRGO + PPIGO +
NAIGO + DLMGO), HPND (HFRGO +PLMGO + NAIGO + DLMGO),
HPID (HFRGO + PLMGO + PPIGO + DLMGO), and HPIN (HFRGO +
PLMGO + PPIGO + NAIGO). Here, “+” means that the component
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Figure 3. The performance comparison between MKFGO and its 10 component and reduced-composite methods on all 1522 test proteins across three
GO aspects. (A) The Fmax values. (B) The Sy, values. (C) The AUPRC values. (D) The average SHAP values.

methods are ensembled using a fully connected neural net-
work. We further benchmarked MKFGO with its component
and reduced-composite methods on all 1522 test proteins, as
summarized in Fig. 3A-C.

It could be found that MKFGO yields the best performance
across all evaluation metrics among the 11 prediction methods
in the three GO aspects, except for the Sy, value in the BP
aspect. In terms of Fmax, for example, MKFGO shares an aver-
age increase of 2.2%, 5.5%, 1.6%, 1.0%, and 0.8%, respectively,
on three GO aspects, in comparison to five reduced-composite
methods, i.e. PIND, HIND, HPND, HPID, and HPIN. This observation
demonstrates that the five components both help to improve the
prediction accuracy of MKFGO, indicating that they could provide
complementary knowledge for function prediction.

Among the five individual components, HFRGO and PLMGO
are the top two performers, ranking 1/2/2 and 2/1/1 on MF/BP/CC
aspects, respectively, with a small margin, on the balance of Frax,
Smin, and AUPRC values. Moreover, these two methods achieve
a significant performance advantage over the other three com-
ponents, primarily because they employ powerful feature rep-
resentations that extract rich, functionally relevant information
directly from amino acid sequences. Since protein sequences are
the primary determinants of molecular function, sequence-based
models benefit from a more direct and informative signal. In
contrast, the other three components rely on indirect sources

of functional information (i.e. PPIs, GO term priors, and gene
sequences), which, although complementary, tend to be less dis-
criminative and less consistently aligned with functional out-
comes. After individually removing five components from MKFGO,
the first and second largest performance decreases occur in HIND
and PIND, with average decreases of 5.3% and 3.4%, respectively,
for three evaluation metrics across all GO aspects. These data
show that HFRGO and PLMGO make the most contributions to
MKFGO, further demonstrating that the handcrafted and PLM-
based features from sequences have nearly equal efficacy for
function prediction.

To better understand the contribution of the five components
within the MKFGO framework, we employed the Shapley Additive
Explanations (SHAP) [60] for model interpretability. Specifically,
for each component, the SHAP value, denoted as svj;, were calcu-
lated to estimate its marginal contribution to the final prediction
of whether a protein P; is associated with a GO term GO;, effec-
tively quantifying how much the inclusion of that component
influences the fused output score for the GO term. To evaluate
the overall importance of each component across the whole test
dataset, we aggregated its SHAP values by calculating the mean
absolute SHAP value over all protein-GO term pairs:

1 noon
SUgn = T xn zz |SUij| (6)

i=1 j=1
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where n; and n are the number of test proteins and candidate GO
terms, respectively.

Figure 3D shows the average SHAP values for the five compo-
nents of MKFGO across three GO aspects. Overall, HFRGO and
PLMGO are the top two performers, ranking in 1/2, 2/1, and 2/1
for MF, BP, and CC aspects, respectively. This aligns with the obser-
vations in Fig. 3A-C, further confirming that the two sequence-
based deep learning methods contribute the most to MKFGO’s
predictions.

It cannot escape our notice that DLMGO exhibits a limited
contribution to MKFGO's prediction, as previously suggested by
the SHAP-based interpretability analysis. To statistically assess
whether this weak contribution is consistent, we conducted a two-
sided Student’s t-test [61] to compare the performance of MKFGO
and HPIN (i.e. MKFGO excluding DLMGO) on the test dataset,
with each model executed five times. The P-values for Fnayx and
AUPRC were all below 3.9 x 1072 across the three GO aspects,
indicating that the observed differences are statistically signifi-
cant. This reduced contribution is likely attributed to limited func-
tional information embedded in DNA sequences of protein-coding
genes. Nevertheless, the DLMGO module shows the great potential
in non-coding gene function prediction, a task biologically related
to protein function prediction, as discussed in Text S9 of the SI,
with the experimental results in Table S6.

Considering that structural information has been widely
explored for protein function prediction, we further investigated
whether incorporating such information could enhance predic-
tion accuracy within the MKFGO framework. To this end, we
designed and evaluated two structure-aware extensions, based
on structure alignment and the graph convolutional network
[62], respectively. Their details are provided in Text S10, with
model architectures and performance comparisons in Figs. S5,
S6, and S7 and Table S7. Experimental results demonstrate
that neither of these two structure-aware extensions led to
any performance gain when integrated into MKFGO, either as
additional modules or as replacements for existing components.
This is mainly because the functional patterns captured by
the current structure-aware extensions can be fully recovered
by the five components in MKFGO, which leverage both deep
learning techniques and large pretrained language models on
multi-source biological data, resulting in redundancy rather than
complementarity. Furthermore, since all structural information
was obtained from predicted models by AlphaFold2 [63] and
ESMFold [30], potential inaccuracies in these structures may
introduce noise into structure-based modeling, thereby limiting
the effectiveness of these extensions.

Decision-level fusion analysis
Performance comparison between different ensemble
techniques

To examine the efficacy of the utilized fully connected neu-
ral network (FCNN) for integrating five components of MKFGO,
we benchmarked it with three commonly used ensemble tech-
niques, namely, logistic regression (LR), weighted voting (WV),
and weighted product (WP), with the details in Text S11 of the
SI. Specifically, for each GO term, the corresponding confidence
scores of all components of MKFGO could be incorporated as a
consensus score using one of the above four ensemble techniques.

Figure 4A illustrates the performance comparison between
four ensemble techniques on all 1522 test proteins. Our FCNN
achieves the best performance among the four techniques, with
an average 1.2% increase in Fpax values compared to the second-
best performer, i.e. LR. Concerning Spi, and AUPRC values, the

FCNN demonstrates superior performance to LR at least on
two GO aspects. Regarding WV and WP, the FCNN consistently
outperforms across all evaluation metrics in all three GO aspects.
It is worth noting that WP exhibited the poorest performance,
even falling below that of the individual component method in
Table 1 on the MF aspect. This finding highlights the important
role of the ensemble technique in composite function prediction.

Superiority of decision-level fusion over feature-level fusion
In MKFGO’s pipeline, we fused the knowledge buried in hand-
crafted and PLM-based features at the decision level rather than
the feature level. The major reason is that incorporating too many
features into a single neural network may lead to a learning
bias toward certain features while overlooking other crucial ones.
Moreover, such a network may not effectively handle the redun-
dancy among multiple features. To demonstrate this point, we
designed three control methods, represented as CM1, CM2, and
CM3, as follows:

e CM1: The combination of HFRGO and PLMGO at the feature
level, where the PLM-based features from PLMGO are incorpo-
rated into the HFRGO architecture via feature concatenation
(see Fig. S8 for architectures).

e CM2: The combination of HFRGO and PLMGO at the decision
level. For each GO term, the corresponding confidence scores
predicted by HFRGO and PLMGO are ensembled as a con-
sensus score using the neural network, consisting of a fully
connected layer with 256 neurons and an output layer with 1
neuron.

e CM3: The combination of CM1 and the other three compo-
nents of MKFGO at the decision level. Specifically, the predic-
tion results of M1, PPIGO, NAIGO, and DLMGO are ensembled
using the same fully connected neural network in the CM2.

Figure 4B summarizes the performance comparison between
MKFGO and the above three control methods on all 1522 test
proteins. It could be observed that CM2 consistently outperforms
CM1 for three metrics on all GO aspects. Notably, the performance
of CM1 in terms of Fmax, Smin, and AUPRC on the CC aspect
in Fig. 4B is even inferior to that of PLMGO alone, as reported
in Table 1. Moreover, after integrating M1 with the other three
components (i.e. PPIGO, NAIGO, and DLMGO), the CM3 still under-
performs MKFGO across all evaluation metrics, except for the Spin
value on the BP aspect. These data demonstrate that decision-
level fusion provides a more effective strategy than feature-level
fusion for integrating knowledge from handcrafted and PLM-
based features.

We further conducted a hyperparameter sensitivity analysis
of the decision-level fusion module and examined the impact
of batch size on loss convergence in the MFKGO framework, as
detailed in Texts S12 and S13, with corresponding experimental
results presented in Figs. S9 and S10. These data demonstrate that
MKFGO exhibits consistently strong performance and reliable
convergence behavior across a wide range of fusion parameters
and batch size configurations.

Ablation study for handcrafted feature
representation-based GO prediction

Contribution analysis of algorithmic modules

We conducted an ablation experiment to analyze the contri-
butions of algorithmic innovations in HFRGO to its enhanced
performance. Beginning with the HFRGO model (M0), we gradually
remove algorithmic components. First, we remove the TL-GBA
module (Module I) from MO to build the model M1; Then, we
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Figure 4. Detailed analysis in decision-level fusion. (A) The performance comparison between four ensemble techniques for incorporating all components
of MKFGO on all 1522 test proteins, where FCNN is employed in MKFGO. (B) The performance comparison between four control methods employing

either feature-level fusion or decision-level fusion on all 1522 test proteins.

individually exclude the [PSSM + SSCM + LSTM-attention layer]
(Module II) and [FDBV + fully connected layer] (Module III) from
M1 to develop the other two ablation models (M2 and M3), with
the architectures in Fig. S11.

Figure 5A illustrates the performance comparison between
four ablation models on all 1522 test proteins. Compared with
MO, M1 without Module I exhibits reduced performance, with the
average decrease of 1.1%, 1.2%, and 3.5% for Fmax, Smin, and AUPRC,
respectively, on three GO aspects. After individually removing
Modules II and III from M1, the performance of M2 and M3
continuously drops. Taking M3 as an example, it shows inferior
performance across all evaluation metrics except for the AUPRC
values on MF and CC aspects, in comparison with M1. These data
indicate that each of the three modules helps enhance the overall
performance of HFRGO.

Interpreting self-attention via functional domain alignment

To better understand how HFRGO makes predictions, we per-
formed a residue-level attention weight analysis in relation to
functional domains. For each protein, attention weights were aver-
aged across all heads to obtain per-residue attention distributions,
and the top 20 residues with the highest weights were selected.
Functional domains were annotated using InterProScan, and we
then calculated the proportion of these top-attention residues
falling within domain regions. Based on this, we defined the
attention-domain overlap rate as the percentage of proteins in
which at least 90% of the top 20 attention residues are located
within the annotated functional domains.

For MF, BP, and CC aspects, the overlap rates are 58.4%, 20.1%,
and 36.9%, respectively. The higher overlap observed for MF can
be attributed to the nature of InterProScan annotations, which
primarily capture conserved domains directly related to molec-
ular functions, such as catalytic or binding regions. In contrast,
BP terms are often involved in complex regulatory pathways and
multi-protein interactions that are less located within specific
conserved domains, leading to lower overlap. CC terms, related
to protein localization, partially depend on domain-related struc-
tural signals, leading to intermediate alignment. These findings
suggest that the self-attention mechanism in HFRGO is capable

of capturing biologically meaningful regions, particularly those
associated with molecular function.

Attention weight visualization for model interpretability

To further enhance the HFRGO’s model interpretability, we
visualized residue-level attention weight distributions for two
representative proteins from the test set, with the UniProt IDs
of 024527 and Q9LSC4. For each protein, we plotted attention
weight distributions from two ablation models (i.e. M1 and
M3) under MF prediction, with each distribution aligned to the
functional domain regions annotated by InterProScan, as shown
in Fig. 5B. M1 integrates both the self-attention mechanism and
InterProScan-derived domain features, while M3 relies solely
on self-attention. Additionally, the predicted MF terms for both
models on these two proteins are listed in Table S8.

For protein 024527, the M3 model exhibits a prominent atten-
tion peak that falls entirely within the InterProScan-annotated
domain region (positions 249-503), indicating strong consistency
between the deep learning model’s learned attention and biologi-
cally defined functional regions. This alignment explains why M3
and M2 (which only uses InterProScan-derived domain features)
predict exactly the same set of GO terms, both correctly iden-
tifying all 10 terms. Furthermore, in the M1 model, which inte-
grates both self-attention and domain features, the attention peak
remains within the domain region without significant deviation
while maintaining the same prediction accuracy.

For protein QI9LSC4, the M3 model shows one major and one
minor attention peak. While the major peak aligns with the
InterProScan-annotated domain (positions 129-322), the minor
peak falls outside. This misalignment contributes to the incon-
sistent GO term predictions between M3 and M2. In contrast,
the M1 model displays a similar overall peak position; however,
the attention weight of the previously minor peak is notice-
ably amplified. This suggests that integrating self-attention with
InterProScan-derived features enables M1 to capture additional
functional signals beyond annotated domains. As a result, M1
achieves significantly improved prediction performance, correctly
identifying all nine GO terms, where four terms were missed by
both M2 and M3.
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Figure 5. Detailed analysis in the ablation study of HFRGO. (A) The performance comparison between four ablation models on all 1522 test proteins.

(B) Attention weight visualization for two representative test proteins.

These results demonstrate that the attention weights learned
by the deep learning model are not only consistent with annotated
functional domains but also complementary to them. This also
helps explain the comparable performance of M2 and M3 in
Fig. SA, as each model captures distinct yet partially overlapping
functional signals. By integrating both information sources, the
M1 model achieves improved prediction accuracy in GO term
annotation.

Case study

To further investigate the effects of different GO prediction meth-
ods, three representative proteins from our test dataset were
selected for illustration, with the UniProt IDs of AOA2L2DDES,
Q812J3,and Q7Q2T8. These proteins are associated with 25, 14, and
7 GO terms, respectively, in the experimental annotation for the BP
aspect, excluding the root term (GO:0008150, biological process).
Table 2 shows the performance comparison between MKFGO, its
five components, and ATGO+ (i.e. the second-best performer in
Table 1) on three representative proteins. Meanwhile, the correctly
predicted GO terms (i.e. true positives) for these seven methods
are visualized as directed acyclic graphs in Fig. 6. Moreover, the
mistakenly predicted terms (false positives) for each method are
listed in Table S9. It is worth noting that the predicted GO terms
for different methods are determined by their respective cut-off
setting to maximize the Fq-score.

These data reveal several interesting insights. Overall, MKFGO
is the best performer with the highest F;-score among all seven GO
prediction methods across three cases. In AOA2L2DDE6, HFRGO
and PLMGO predict nearly the same number of true positives, with
20 and 21 GO terms, respectively, significantly outperforming the

other three component methods (PPIGO, NAIGO, and DLMGO).
Importantly, among the five component methods, either PLMGO
or HFRGO can correctly predict these five GO terms: GO:0051715,
G0:0019835, G0:0044179, GO:0009620, and GO:0050832. After
incorporating five components, MKFGO successfully inherits all
of the 23 true positives. In Q812J3, five components gain a total of 9
true positives, where only NAIGO and PPIGO separately correctly
identify GO:0044237 and GO:0006508 with confidence scores of
0.208 and 1.000, respectively. As a result, the composite MKFGO
yields 8 true positives without false positives. It cannot escape our
notice that the G0O:0044237 is excluded from the modeling results
of MKFGO. The underlying reason is that the low confidence score
of 0.208 from NAIGO is further diluted to 0.078, falling below the
cut-off value of MKFGO, after decision-level fusion. Occasionally,
the main contributors (HFRGO, PLMGO, and PPIGO) cannot provide
any true positive GO terms, as observed in the case of Q9SV19,
listed in Table S10. Even in this case, MKFGO can inherit part of
the predictions from NAIGO and DLMGO, maintaining acceptable
performance. These cases demonstrate that the complementary
functional knowledge embedded in different component methods
can be effectively integrated into MKFGO.

Sometimes, one component method can capture all true pos-
itives yielded by other methods. Taking Q7Q2T8 as an example,
HFRGO correctly hit all seven GO terms, covering the true positives
of the other four components. Other examples include Q9KG76,
AOA1DSRMD1, and J9VWW9, in which the PLMGO, PPIGO, and
DLMGO could individually encompass all true positives predicted
by other components, as listed in Tables S11, S12, and S13. Even
in these cases, the final MKFGO can effectively integrate all true
positives from the five components with the least false positives,
leading to further improved performance.
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Table 2. The modeling results of MKFGO in comparison with six competing GO prediction methods on three representative cases in BP

prediction
Method AO0A2L2DDE6 Q812J3 Q7Q2T8
TP FP F,-score TP FP F1-score TP FP F1-score

HFRGO 20 5 0.800 7 11 0.438 7 5 0.737
PLMGO 21 0 0.913 5 1 0.500 2 0.364
PPIGO 0 0 0.000 7 7 0.500 0 0 0.000
NAIGO 3 33 0.098 7 29 0.280 5 31 0.233
DLMGO 0 0 0.000 5 9 0.357 5 18 0.333
ATGO+ 23 9 0.807 6 0 0.600 7 10 0.583
MKFGO 23 1 0.939 8 0 0.727 7 2 0.875

TP, the number of correctly predicted GO terms; FP, the number of mistakenly predicted GO terms. Bold fonts highlight the best performer in each category.
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Figure 6. The directed acyclic graph of GO terms in the BP aspect for three representative cases. The circles above each GO term represent prediction
methods, where a circle filled with “X” on GO term “Y” signifies that method “X” correctly predicts term “Y.” (A) AOA2L2DDES6. (B) Q812J3. (C) Q7Q2TS8.

Conclusion

We developed a novel composite deep learning method, MKFGO,
to predict protein functions using the integration of five GO pre-
diction pipelines built on multi-source biological data. Large-scale
benchmarking on 1522 nonredundant test proteins demonstrated
that MKFGO consistently outperforms 12 existing state-of-the-art
methods in GO prediction accuracy. The performance advantage
of MKFGO mainly stems from several advancements. First, two
deep-learning component methods, HFRGO and PLMGO, could
capture the function-related knowledge from protein sequences
in different views, with effective knowledge fusion at the decision
level. Specifically, HFRGO derived three handcrafted features from
the views of sequence conversion, secondary structure, and fam-
ily domain, which are then associated with function prediction
through integrating the designed LSTM-attention network with

the TL-GBA strategy. PLMGO employs the ProtTrans transformer
to encode the sequences into feature embeddings with evolution
diversity, then decoded by the fully connected neural network.
Second, another three components, driven by PPI, GO term proba-
bility, and coding-gene sequence, provide complementary knowl-
edge for function prediction.

Despite the promising prediction performance, there remains
significant potential for further improvements. First, the confi-
dence scores from the five component methods are merged into a
consensus score using a simple one-layer fully connected neural
network. However, employing a more advanced deep learning
approach could further enhance the integration of confidence
scores. Second, 3D structural information remains a promising
direction for protein function prediction. The GCN-based models
explored in this study are relatively simple, and more advanced
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graph neural network architectures will be investigated to better
capture structural patterns. Research in these areas is currently
ongoing.

Key Points

e Accurate determination of protein functions is crucial
for understanding life mechanisms and advancing drug
discovery. This study has developed MKFGO, a novel
composite deep learning model, to predict GO terms
of proteins by integrating five complementary pipelines
built on multi-source biological data.

e Experimental results demonstrate that MKFGO signif-
icantly outperforms existing state-of-the-art methods
in GO prediction accuracy. The key strength of MKFGO
lies in its two deep learning components, HFRGO and
PLMGO, which extract functional knowledge from pro-
tein sequences in different views, with effective knowl-
edge fusion at the decision level.

e HFRGO leverages an LSTM-attention network embedded
with handcrafted features, in which a TL-GBA strategy
is designed to strengthen the correlation between fea-
ture similarity and function similarity. PLMGO utilizes
the ProtTrans transformer to encode the sequences into
feature embeddings with evolution diversity, which are
then decoded using a fully connected neural network.
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