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Supporting Texts

Text S1. The details of ESM-MSA transformer
A. Masking

For an input MSA, the masking strategy is performed. Specifically, for each
sequence in MSA, we randomly sample 15% tokens (amino acids), each of which is
changed as a special “masking” token with 80% probability, a randomly-chosen
alternate amino acid with 10% probability, and the original input token (i.e., no change)

with 10% probability.

B. One-hot encoding
The masked MSA is encoded as three matrices using one-hot encoding from three
different views. Specifically, for the j-th position of the i-th sequence in the masked

MSA, we encode it as three one-hot vectors, i.e., X;;, ¥;j, and Z;;, from the views of

ijs
token type, row position, and column position, respectively.

1, k=c;;
xij = (Xij1 Xijzs oos Xijemge) € ROMO%, Xy = {0 k # cU 1
1 l]
1, k=i
Yij = Viju Yijzs s Vijtnay) € RMM%, i = {0 k#i @)
1, k=]
zij = (2ij1, Zijor 1 Zijimg,) € R, 25 = {0 k #j ®)

where ¢;; is the index of token type for the j-th position of the i-th sequence, Cpax
is the number of types of tokens, L., and M,,,, are preset maximum values for
sequence length and alignments, respectively. In this work, C,,. = 28 and L4, =
M, = 1024, where 28 types of tokens include 20 common amino acids, 6 non-
common amino acids (B, J, O, U, X and Z), 1 gap token, and 1 “masking” token.
According to Egs. 1-3, the masked MSA can be encoded as three matrices, i.e., X,
Y and Z, through one-hot encoding from the view of token type, row position, and
column position, respectively, where X € RM*LXCmax =y € RM*L*Mmax and Z €
RMXLXLmax

M is the number of alignments, and L is the length of individual

sequence in the masked MSA.

C. Initial embedding
Each one-hot coding matrix is multiplied by a weight matrix to generate the

corresponding embedding matrix:



X[l] X[l] Wtoken

X2 X[2]lw
Htoken = XWtoken = [ ] Wtoken = [ ] token € RMXLXD (4)

[M] X[M] i/.I./token

X[i] € RE*Cmax W en € RCEmax*P

Y[1) Y[AIW, o,
Hyoy = XWoo,, = | TP W, = | VW row | ¢ groo s
¥[M] VMW, o,

Y[i] € RL*Mmax, W, € RMmaxxD

Z[l] Z[l]wcol
Hcol = chol = Z[Z] Wcol = Z[Z]"ITVCOI € RMXLXD (6)
Z[M] Z[M]Wcol

Z[i] € RL*Lmax W ,,; € Rlmax*D

where X[i], Y[i] and Z[i] are the one-hot coding matrices for the i-th sequence in
the masked MSA from the view of token type, row position, and column position,
respectively, H;oken,» Hrow, and H.,; are token type-based, row position-based, and
column position-based embedding matrices for the masked MSA, respectively, and D
is the embedding dimension. In this work, D = 768.

Three embedding matrices are added as an initial embedding matrix H,;;:

Hinit = Htoken + Hrow + Hcoerinit € RMXLXD (7)

D. Batch normalization and dropout
The initial embedding matrix H,;; is fed to the batch normalization layer to generate

the corresponding normalized matrix H;:

BN(hll) BN(hlL)

H, = BN(Hy;s) = : : ®)
BN(hMl) BN(hML)

BN(hy;) =y -2 4 g hy; € RP )

2
O'U+E

where h;; is the initial embedding vector for the j-th position of the i-th sequence in
the masked MSA, u;; and aizj are mean and variance for h;;, respectively, and y, B,
and € are normalized factors.

The normalized matrix H; is fed to dropout layer:



H, « dropout(H,7) (10)

where 7 is the rate of neurons which are randomly dropped in each training step,

indicating that the corresponding weight vectors will be not optimized.

E. Self-attention
The initial embedding matrix H is fed to the self-attention network with N blocks,
each of which consists of three sub-blocks. In this work, N = 12.

The first sub-block consists of a batch normalization layer, a row attention layer,

a dropout layer, and a short connection, as follows.

H? = BN(H,) (11)

HR = RA(H}) (12)

HE < dropout(HE, 1) (13)

F, = SC(Hy,HY) = H,, + HR (14)

where Hj and F, are the input and output matrices in the first sub-block of the k-th
self-attention block, respectively, BN(*) is the batch normalization function (see Egs.
8-9), SC(+) is the short connection, and RA(-) is the row attention layer (see Eqs. 23-
30), H,, HE HE, F, € RM*L*D,

The second sub-block consists of a batch normalization layer, a column attention

layer, a dropout layer, and a short connection, as follows.

F? = BN(F}) (15)

F$ = CA(F®) (16)

F$ « dropout(F¢,r) (17)
U, = SC(Fy,F$) = Fy + F§ (18)

where F; and U, are the input and output matrices in the second sub-block of the k-
th self-attention block, respectively, CA(*) is the column attention layer (see Egs. 31-
39),and F8, F¢, U, € RM*IXD,

The last sub-block consists of a batch normalization layer, a feed-forward network,

a dropout layer, and a short connection, as follows.

U% = BN(U,) (19)

UL = FFN(UY) (20)

UL « dropout(U%, 1) (21)
H,,, =SCWU,U)=U,+U} (22)

where U, and Hj,, are the input and output matrices in the third sub-block of the



k-th self-attention block, respectively, FFN(.) is the feed-forward network (see Egs.
40-45), and UZ, UL, H, ., € RMXLXD,

(A) Row attention
Each row attention layer consists of m attention heads and a linear unit, where m =
12. In each attention head, the input matrix is multiplied by three weight matrices to

generate the corresponding Query, Key, and Value matrices.

HE[1]] (HE[1W ]
B QR D

QR = nggf _ | He[2] W}gf _ HE[Z]WM e RMXLXGY) (23)
LH; [M]. | HE[M]W R
[H[1]] [HE[1IWES

Kllgt = Hl,zwlk(f = Hllz[z] Wlk(f = HE[Z]WI,g? € RMXLX(%) (24)
LH [M]. LHE MW
[H[1]] [HE[1]WiE

VR, = gPw'R = | He[2] |yvr _ | HE2IWiE | ¢ prxixe (25)
LHE [M]. LHE [MIW§

HE[i] € RP°, W2F, WER, WIR € RPX G
where H% is the input matrix of row attention layer in the k-th self-attention block
(See Eq. 12), QF,, K%, and VR, are Query, Key, and Value matrices in the #-th head
of the row attention layer in the k-th block, respectively, ng , WKE, and WYE are
corresponding weight metrices.

Then, the dot-product between Q%, and K%, is performed and then normalized

by SoftMax function to generate a row attention weight matrix:

WAR = SoftMax Z%l@ﬁt[i]'(Kﬁt[i])T} ERLXL, QR i, KR i ERLX(D/TTL) 26
kt \/m kt kt

WER « dropout(W4R r (27)
kt p kt

where W#R is the attention weight matrix in the z-th head of the row attention layer in
the k-th block and measures the correlation for each pair of columns in the masked
MSA.

Next, the row attention weight matrix W4F is multiplied by Value matrix V¥, to

generate the corresponding row attention matrix:



Vie[1] Wil Vi [1]
A = wipvE, = wi | Vial2l | = | WidVie[2) | e g, v i1 e R2G) 23)
Vie[MIL LWtV [M]
where AR, is the attention matrix in the ¢-th head of the row attention layer in the k-
th block.

Finally, the outputs of all attention heads are concatenated as a new matrix, which is

further fed to a linear unit;:

AF = AR AR, . AR, € RMX1XD (29)
Ai[1] AR [1WE
R R R

HE = afwk + b = | Acl2] fwr o pr = | Ac2IWic | 4 pR e guxixo (30
% [M] R IMIWE

Wi € RP*P, Ag[i] € RM*P
where HY in the output matrix of row attention layer in the k-th attention block (See

Eq. 12), and W% and bf are weight matrix and bias in the linear unit, respectively.

(B) Column attention
Each column attention layer consists of m attention heads and a linear unit. In each
attention head, the input matrix is multiplied by three weight matrices to generate the

corresponding Query, Key, and Value matrices.

_ . r (o
FE[1] FRILIWR
B B Qc D
05, = FEwls = | Fil2l e = | Fel2Wie | e g 31
LFi [M]] | FE[ MW
) R
Klgt = Fgwllgtc = FE[Z] Wllgtc = Fllz[z]wllgg € RMXLX(%) (32)
LF}[M] LFE MW
IO P
Vgt = FEWIZtC = Fllg [2] WZE = FE [Z]WZE € RMXLX(%) (33)
LF}[M] LFR MWt |

D
F2[i] € RWP, W, Wk wi¢ e RP*Gn)
where F? is the input matrix of column attention layer in the k-th self-attention block
(see Eq. 16), Q%,, K&, and V¢, are Query, Key, and Value matrices in the #-th head

of column attention layer in the k-th block, respectively, Wgtc , WXE and WS are



corresponding weight metrices.
Then, the dot-product between Q%, and K¢, is performed and then normalized

by SoftMax function to generate an attention weight matrix:

Wil = SoftMax (%) € RMxIxM (34)
WE « dropout(W4¢, 1) (35)
Q5 (KE)T = [Q6L 1,1 QG 2] e Qfels LA]] - [KEL, 1T Kl 28] K[ L] =
[QF[:, 1] K&, 1e17 Qfel: 221 KE[:, 2,017 Qe L] KE [, L,:]7] € R (36)

Q%L LK ),:]€ RMX(%), Q% [:j,: 1 K&, [:,j,:]T € RMM
where WS is the attention weight matrix in the #-th head of column attention layer in
the k-th block, and W#¢[:,j,:] measures the correlation for each pair of alignments
at the j-th position.
Next, the column attention weight matrix W4< is multiplied by Value matrix V§,

to generate the corresponding column attention matrix:

AS, = WSVE, = [ WA L WAST, 28] o WHSTs L, 1] - [V L VED 2] VT L, 1| WASE: 1,01
MxLx 2

VELEL:] WIST, 2,0 VEE 2 WL L VE L)) € RN (37)

WAL, j,:] € R™M V[, ), -] € MG, WECT:j, ] - VE,[:,j, ] € R
where A, is the attention matrix in the ¢-th head of column attention layer in the k-
th block.

Finally, the outputs of all attention heads are concatenated as a new matrix, which is
further fed to a linear unit:

AL = AL AS, L AS, € RMXLXD (38)

Ag[1] Af[1]wy
FC = ASWE + be = | Akl2] [we = [Az[2IWi | 4 pe e guxixo (39

“[M] LMWy

W§ € RPXP AL[i] € RYXP

where F¢ in the output matrix of column attention layer in the k-th attention block,
(See Eq. 16), and W¢ and b¢ are weight matrix and bias in the linear unit,

respectively.



(C) Feed-forward network

TF — gelu(U’-’zWi + bjlé) c RMXLXDl (40)
TY « dropout(T%,r) (41)
Uf = Tllzwi + bi € RMXLXD (42)
elu(x) = x@(x (43)
9
UR[1]] TUB[1WL]
UBwt = UZ[2] wi = Ui[2]wy € RMXLXD; (44)
Uz (M1 U2 MWL
Ty [1]] FTE[1]W2 ]
riw? = | Tkl2] |z = | Te[2IWE | ¢ guxixo 45)
T} [M]! TE [ MW2]

UZ[i] € RY*P, W € RP*P1, TE[i] € RYP1, W% € RP1*P, D,=3072

where U¥ and U¥% are the input and output matrices of feed-forward network in the
k-th self-attention block, respectively, (see Eq. 20), W} and W% are weight matrices,

b;, and bi are bias, and @(x)is the integral of Gaussian Distribution for x.

G. Output layer
The output of the last self-attention block is fed to a fully connected layer with SoftMax

function to generate a probability matrix:

P = SoftMax(Hy,,W° + b°) € RM*L*Cmax (46)
Hy,[1]W°
0

HN+1WO = HN+1[2]W ,HN+1[i] € RLXD'WO € RP*Cmax (47)
Hy ., [M]W©°

where H),, is the outputted embedding matrix in the N-th self-attention block, W?°
and b° are weight matrix and bias, respectively, and the P(i,j,c) indicates the
probability that the j-th position of the i-th sequence in the masked MSA is predicted

as the c-th type of amino acid.

F. Loss function

For an individual MSA, the loss function is designed as:

1 1
Losspsqa = ﬁl{m " Yjemask(@) —L0GPjcij)} (48)



where M is the number of alignments, mask(i) is a set of masking position in the i-
th sequence, |mask(i)| is the number of elements in mask(i), c(i,j) is the type
index of amino acid for the j-th position in the i-th sequence before masking, and -
logP; i jy is negative log likelihood of the true amino acid at the j-th position in the

i-th sequence under condition of masking.



Supporting Tables

Table S1. Average precision in top N predicted contacts on TS630 dataset.

Methods Top 1 Top 5 Top 10 Top 20 Top 50 Top 100
ICCPred 0.267 0.245 0.240 0.231 0.217 0.198
GLINTER 0.153 0.154 0.160 0.154 0.146 0.139
HDIContact 0.041 0.038 0.035 0.040 0.081 0.103




Table S2. Average precision in top L/K predicted contacts, AUPR, and AUROC on TS630

dataset. ALL represents the number of native contacts on the target.
Methods AUROC AUPR  Top L/30

Top L/20  Top L/10
ICCPred 0.725

TopL/5 TopL/2 TopALL
0.115 0.238 0.233 0.225 0.210 0.181 0.133
GLINTER 0.411 0.111 0.156 0.152 0.149 0.143 0.137 0.116
HDIContact 0.659 0.070 0.035 0.035 0.055

0.091 0.107

0.091



Table S3. Average contact precision of different features on the TS630 dataset.

Feature Top
5 10 20 50 100 L/30 L/20 L/10 L/5 L2
ESM2 0.046 0.039 0.036 0.038 0.039 0.038 0.039 0.038 0.038 0.038 0.037
CPX 0.251 0.233 0.218 0.209 0.199 0.181 0.218 0.214 0.205 0.193 0.167
GDS 0.190 0.177 0.170 0.167 0.157 0.145 0.171 0.168 0.161 0.152 0.133
PPIS 0.157 0.160 0.157 0.151 0.142 0.131 0.159 0.154 0.148 0.138 0.122
PIS 0.237 0.223 0.214 0.201 0.186 0.171 0.214 0.207 0.194 0.181 0.158
PP 0.208 0.203 0.200 0.194 0.179 0.166 0.202 0.198 0.187 0.175 0.154
GP 0.235 0.227 0.223 0.218 0.201 0.186 0.219 0.218 0.208 0.195 0.172
Gl 0.195 0.190 0.188 0.181 0.172 0.160 0.186 0.184 0.178 0.167 0.149
GSP 0.267 0.245 0.240 0.231 0.217 0.198 0.238 0.233 0.225 0.210 0.181




(A) The framework of ESM-MSA
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(B) The workflow of row attention layer
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Figure S1. The workflow of ESM-MSA
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Figure S2. Performance comparison between nine feature embeddings regarding
AUROC on the TS630 dataset.



