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A B S T R A C T   

Accurate identification of inter-chain contacts in the protein complex is critical to determine the corresponding 
3D structures and understand the biological functions. We proposed a new deep learning method, ICCPred, to 
deduce the inter-chain contacts from the amino acid sequences of the protein complex. This pipeline was built on 
the designed deep residual network architecture, integrating the pre-trained language model with three multiple 
sequence alignments (MSAs) from different biological views. Experimental results on 709 non-redundant 
benchmarking protein complexes showed that the proposed ICCPred significantly increased inter-chain con
tact prediction accuracy compared to the state-of-the-art approaches. Detailed data analyses showed that the 
significant advantage of ICCPred lies in the utilization of pre-trained transformer language models which can 
effectively extract the complementary co-evolution diversity from three MSAs. Meanwhile, the designed deep 
residual network enhances the correlation between the co-evolution diversity and the patterns of inter-chain 
contacts. These results demonstrated a new avenue for high-accuracy deep-learning inter-chain contact pre
diction that is applicable to large-scale protein-protein interaction annotations from sequence alone.   

1. Introduction 

In living cells, proteins perform functions by interacting with other 
proteins. The accurate identification of protein complex structure is 
critical to understand the biological functions and design new drugs 
[1–8]. Direct determination of the 3D structures of protein complexes 
through biochemical methods, such as X-ray crystallography [9], nu
clear magnetic resonance spectroscopy [10], and cryo-electron micro
scopy [11], is time-consuming, laborious, and often incomplete. Many 
computational methods have emerged to accelerate the deposition of 
protein complex structures. However, the accuracy of complex structure 
prediction methods is not satisfactory. To improve the complex structure 
prediction, a promising approach is to determine the inter-chain con
tacts, as the important constraint to predict the atom coordinates. In 
light of this, inter-chain contact prediction has been a hot topic. 

The existing inter-chain contact prediction methods can be divided 
into direct coupling analysis-based and machine learning-based 
methods. In the early stage, direct coupling analysis-based methods 

lead the trend of inter-chain contact prediction, such as CCMPred [12], 
Germlin [13], Evcomplex [14,15], and EVfold [16]. Specifically, those 
methods identify inter-chain contacts by analyzing coevolution residues 
from a multiple sequence alignment (MSA) to distinguish between direct 
and indirect correlation effects. However, there is a common drawback: 
the accuracy of direct coupling analysis-based methods is contingent 
upon the number of homology sequences. To eliminate this dependence, 
machine learning-based methods have emerged to extract hand-crafted 
features from sequences and structures, which can then be used by 
machine learning approaches to implement inter-chain contact predic
tion, with typical examples including PAIRpred [17], I-Patch [18] and 
BIPSPI [19]. 

Despite the potential advantage, the prediction accuracy of many 
early machine learning methods was not satisfactory. One of the major 
reasons is due to the lack of informative feature representation methods, 
such as position-specific scoring matrices and physiochemical proper
ties, as most of the approaches are based on simple feature representa
tions, which cannot fully extract the complex pattern of inter-chain 
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contacts. To partly overcome this barrier, several methods, e.g., Com
plexContact [20], DeepHomo [21], utilized deep learning technology to 
predict inter-chain contacts. Compared to traditional machine learning 
approaches, one advantage of deep learning-based methods is that they 
could extract more discriminative feature embeddings from preliminary 
sequences of the protein complex through designing complex neural 
networks. Nevertheless, the performance of deep learning methods is 
often hampered by the limitation of protein complex data. The insuffi
cient experimental data significantly limits the effectiveness of training 
the high-accuracy deep neural network models for inter-chain contact 
prediction. 

To alleviate the issue caused by the lack of protein complex data, a 
promising approach is to utilize protein language models pre-trained 
through deep-learning networks on large-scale MSAs. Due to the 
extensive sequence training and learning, important co-evolution pat
terns between residues, which are critical for inter-chain contact pre
diction, can be extracted through the language models and utilized for 
feature embedding. Recently, a new language model, ESM-MSA trans
former [22], has achieved great success in protein monomer structure 
prediction. Meanwhile, a few deep learning-based methods, e.g., 
GLINTER [23] and HDIContact [24], utilized ESM-MSA to extract 
discriminate feature embeddings from MSAs to improve inter-chain 
contact prediction accuracy for protein complexes. Despite the prom
ising results, there is still room for further improvements due to the 
following reasons. Specifically, the above-mentioned method extracts 
the feature embedding from a single type of MSA, in which the 
co-evolution patterns are very limited. Therefore, multiple types of MSA 
can provide complementary co-evolution knowledge for further 
improving the prediction accuracy of inter-chain contacts. 

In this work, we proposed a new deep learning method, ICCPred, for 
high-accuracy inter-chain contact prediction through integrating unsu
pervised language models with multiple types of MSAs from different 
biological views. Specifically, the recently proposed ESM-MSA trans
former is utilized to extract the complementary co-evolution diversity 
highly associated with inter-chain contacts from three designed MSAs, 
which are generated from the views of genomic distance, phylogeny 
information, and protein-protein interactions. Then, a deep residual 
network architecture is proposed to enhance the correlation between co- 
evolution diversity and the patterns of inter-chain contacts. ICCPred has 
been systematically tested on a large set of non-redundant protein 
complexes, where the results demonstrated a significant advantage in 
accurate inter-chain contact prediction over the current state-of-the-art 
of the field. The standalone package of ICCPred is made freely available 
through the URL https://github.com/yiheng-zhu/ICCPred. 

2. Methods 

2.1. Benchmark dataset 

A set of 4204 non-redundant protein complexes with medium-to- 
long sequence lengths is collected from the PDB library and used for 
training and testing the ICCPred pipeline. The complexes in this set have 
a pair-wise sequence similarity of <40%. The protein set was randomly 
split into 3574 for training and validation, and the remaining 630 were 
independent testing complexes (i.e., TS630). In addition, the training 
and validation sets were divided at proportions of 90% and 10%, 
respectively. The average length in the ICCPred benchmark contains 424 
residues, with the smallest complex containing 103 residues and the 
largest holding 700 residues. 

In addition to TS630, the models were tested on benchmark datasets 
compiled in other studies, which include the Baker dataset (i.e., TS032) 
[13] used to evaluate the ComplexContact [20] and the E.coli dataset (i. 
e., TS047) [14] used to evaluate HDIContact [24]. 

2.2. The workflow of ICCPred 

ICCPred is a deep learning-based inter-chain contact prediction 
method. The input and output are two chains (i.e., a receptor sequence 
and a ligand sequence) and an inter-chain contact map, respectively. As 
shown in Fig. 1, ICCPred consists of three procedures of multi-view MSA 
generation, feature embedding using the ESM-MSA transformer, and 
inter-chain contact prediction using the deep residual network. 

2.2.1. Procedure I: multi-view MSA generation 
For the input two sequences, we use HHblits software (with the pa

rameters “-diff inf -id 99 -cov 50 -n 3” for HH-suite 2.0.16 program) [32] 
to search the corresponding MSAs from Uniclust30 [33] and STRING 
databases [25], denoted as (receptor MSA I, ligand MSA I) and (receptor 
MSA II, ligand MSA II), respectively. In the first pair of MSAs, we 
concentrate single sequences to generate two joint MSAs (i.e., joint 
MSAs I and II) from the views of genomic distance and phylogeny in
formation, respectively; In the second MSA pair, the single sequences are 
concentrated as another joint MSA (i.e., joint MSA III) from the view of 
protein-protein interaction (see details in section 2.3). 

2.2.2. Procedure II: Feature embedding using the ESM-MSA transformer 
Each joint MSA is fed to the ESM-MSA transformer with 12 blocks to 

generate the corresponding feature embedding, represented as a 
(L1 +L2) × (L1 +L2) × 144 attention map, where L1 and L2 are the 
lengths of receptor and ligand sequences, respectively. 144 is a preset 
hyper-parameter in the ESM-MSA transformer (see details in section 
2.4). In each attention map, the element in the i-th row and j-th column 
can be viewed as a 144-D correlation coefficient vector between the i-th 
position of the receptor sequence and the j-th position of the ligand 
sequence in the evolution process from a specific view, where i ≤ L1 and 
j ≤ L2. Then, three attention maps (i.e., attention map I, II, and III) are 
concentrated in the channels to generate a multi-view attention map (i. 
e., attention map IV) with the scale of (L1 + L2)× (L1 + L2)× 432. 
Finally, we extract the first L1 rows and L2 columns from attention map 
IV to generate a smaller attention map (i.e., attention map V) with the 
scale of L1 × L2 × 432, as the final feature embedding. 

2.2.3. Procedure III: Inter-chain contact prediction using the deep residual 
network 

The attention map V is fed to a deep residual network with 5 basic 
blocks to generate a L1 × L2 confidence score matrix of inter-chain 
contact, where the element in the i-th row and j-th column is the con
fidence score of contact between the i-th position of the receptor 
sequence and the j-th position of the ligand sequence. The output of the 
t-th residual basic block admits a representation of the form 

xt = dp(f (xt− 1 + cb(f (cb(xt))))) (1)  

where xt is the output in the t-th block, dp (.) is the dropout layer with a 
ratio of 0.2 to prevent over-fitting in the training stage, f(.) is the RELU 
activate function, and cb(.) is the combination of the 2D convolution 
layer with the filter size of 3 × 3 and the batch normalization layer. 

2.3. Multi-view MSA generation strategies 

In ICCPred, we proposed three strategies from different views, 
including genomic distance, phylogeny information, and protein- 
protein interaction, separately concentrating two monomer MSAs as a 
joint MSA. 

2.3.1. Genomic distance-based strategy (GDS) 
We use HHblits software [32] to search against the Uniclust30 

database [33] to generate the corresponding monomer MSAs for a re
ceptor sequence and a ligand sequence. Then, two monomer MSAs are 
concentrated based on the proteins in close proximity on the genome 
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[13,20,26]; In other words, proteins co-located on the chromosome into 
operons on the same operon are more likely to interact [13,20,26,27]. 
Therefore, we retrieved the coding DNA sequence (CDS) of the protein 
and fetched the genomic contig of CDS from European Nucleotide 
Archive (ENA) [28]. To summarize, the concatenated pairs of proteins 
are based on two criteria: first, the CDS of each concatenated protein 
pair must be located on the same genomic contig; second, the intergenic 
distance between the two concatenated proteins must be less than a 
certain threshold of 20 [13,14]. 

2.3.2. Phylogeny information-based strategy (PIS) 
There is a challenging problem that two genes may interact even if 

their genomic distances are not close [27]. We use phylogeny informa
tion to concatenate two monomer MSAs to overcome this problem. First, 
according to the phylogeny tree in the Taxonomy database [29], we 
grouped the proteins in each MSA. Secondly, we ranked the similarity of 
query sequences and the proteins in each species of each MSA from high 
to low. In the two MSAs, the highest-ranked hit from one species was 
paired with the highest-ranked hit of the interacting chain from the same 
organism species. The paired sequences contain the inter-chain coevo
lutionary information in the concentrated MSA [30]. 

2.3.3. Protein-protein interaction-based strategy (PPIS) 
The protein-protein interaction network database (i.e., STRING [25]) 

(https://cn.string-db.org/) records the confidence score of interaction 
between two proteins. Therefore, we determine whether two sequences 
in each monomer MSA are concentrated according to the corresponding 
confidence score of interaction, where each monomer MSA is generated 
using HHblits to search the STRING database. 

2.4. The details of the ESM-MSA transformer 

The architecture of the ESM-MSA transformer is illustrated in Fig. S1. 
The masking strategy is performed on the corresponding tokens (i.e., 
amino acids) for an input MSA. Then, the masked MSA is encoded as 
three one-hot encoding matrices from different views, respectively, 
which are then fused to generate an initial embedding matrix. Next, this 
embedding matrix is fed to a self-attention network with 12 blocks, each 
consisting of a row attention layer, a column attention layer, a feed- 
forward network, a batch normalization layer, and a dropout layer. 
The output of the self-attention network is a probability matrix, 

indicating the probability of belonging to types of amino acids for each 
position in masked MSA. Finally, the loss function is designed as a 
negative log-likelihood function between the masked MSA and the 
probability matrix, to ensure that the prediction model correctly pre
dicts the true amino acids in the masked position as much as possible. 

The Adam optimization algorithm optimizes the ESM-MSA trans
former by minimizing the loss function. Then, the attention maps of 12 
attention heads in all 12 blocks are concentrated to generate the final 
attention map with the scale of L× L× 144, as the feature embedding of 
ESM-MSA, where L is the length of a single sequence in the inputted 
MSA. A detailed description of the ESM-MSA transformer is given in 
Text S1. 

2.5. Evaluation metrics 

The performance of inter-chain contact map prediction was evalu
ated by the following criteria: precision, area under the receiver oper
ating characteristic curve (AUROC), and area under the precision-recall 
curve (AUPR). Precision is the ratio of correctly predicted contacts in the 
top N (N = 1, 5, 10, 20, 50, and 100) number of predicted contacts. The 
overall performance in the benchmark dataset was represented by the 
average precision of all the targets. In addition, we utilized the precision 
of top L/K predicted contacts to illustrate the L-dependent accuracy 
commonly employed in intra- and inter-chain contact prediction, where 
L is the total length of the two protein chains and K = 30, 20, 10, 5, and 2 
[20,21,24,31]. AUROC quantifies the balance between sensitivity and 
specificity, with higher scores indicating better performance. Similarly, 
AUPR measures the equilibrium between precision and recall, with 
elevated scores suggesting superior performance. 

3. Results 

3.1. Comparison with competing inter-chain contact predictors 

To evaluate the performance of our proposed methodology for inter- 
chain contact map prediction, we compared ICCPred with the deep 
learning-based methods, including GLINTER and HDIContact on three 
different datasets. 

3.1.1. Performance on the TS630 dataset 
Fig. 2 shows that ICCPred significantly outperformed GLINTER and 

Fig. 1. The overview of the ICCPred architecture. (A) We generate MSAs from the views of genomic distance, phylogeny information, and protein-protein inter
action. (B) The feature embeddings of MSAs are extracted by the ESM-MSA transformer. (C) We capture contact maps from MSA embeddings on inter-chain using the 
deep residual network. 
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HDIContact across all the evaluated metrics on the TS630 dataset. When 
combining all targets, the overall top 10/20 precision by ICCPred 
(0.240/0.232) is 33.3%/33.4% and 84.0%/83.0% higher than the 
GLINTER (0.160/0.154) and HDIContact (0.034/0.040), respectively. 
Moreover, the performance of ICCPred is significantly superior to that of 
GLINTER and HDIContact in terms of AUROC values, showing an in
crease of up to 43.3% and 9.0%, respectively (as depicted in Fig. 2B). 
These differences correspond to remarkably low p-values of 2.8E-240 
and 1.3E-13 in the student’s t-test. Additionally, the AUPR value of 
ICCPred (0.15) surpasses that of GLINTER and HDIContact by 3.5% and 
39.1%, respectively. Furthermore, we also evaluated top L/K predicted 
inter-chain contacts to show the L-dependent precision. ICCPred ach
ieves 0.234 top L/20 precision, while GLINTER and HDIContact have 
15.2% and 3.4% top L/20 precision, respectively. See detailed results in 
Supplementary Tables S1 and S2. 

3.1.2. Performance on the TS047 dataset 
We further benchmark three deep learning methods on the TS047 

dataset, as shown in Tables 1 and 2. It could be found that ICCPred 
obtains 0.636/0.609/0.566 precision in the top 5/10/20 predicted 
contacts, which is 57.1%/56.0%/54.3% and 8.3%/8.1%/4.9% higher 
than the GLINTER and HDIContact, respectively. Moreover, regarding 
the precision in the top L/K (K = 20, 10, and 5) predicted contacts, 
ICCPred gains 111.5% and 2.1% average improvements in the above- 
mentioned five evaluation metrics compared to GLINTER and HDI
Contact, respectively. Additionally, ICCPred obtained the highest top 
ALL precision of 0.310, which gains 55.9% and 8.1% improvements 
compared to GLINTER and HDIContact, respectively. 

3.1.3. Performance on the TS032 dataset 
As shown in Table 3, our ICCPred model outperformed both direct 

coupling analysis-based (i.e., EVcomplex, GremlinComplex, EVfold, and 
CCMPred) and machine learning-based methods (i.e., ComplexContact 
and GLINTER) on the TS032 test dataset, in terms of precision in the top 
L/5, 50, 20, 10, and 5 predicted contacts. Specifically, ICCPred achieves 
69.0%, 42.2%, 39.2%, 36.9%, 13.6%, and 70.4% average improvements 
in the five evaluation metrics as mentioned earlier in comparison to 
EVcomplex, GremlinComplex, EVfold, CCMPred, ComplexContact, and 

GLINTER, respectively. 

3.1.4. Case study 
Fig. 3 presents an example of a complex form of Mycobacterium 

tuberculosis VapBC11 toxin-antitoxin (PDB ID: 6a7v), where ICCPred 
shows significantly better performance than GLINTER and HDIContact 
in the inter-chain contact prediction. Taking the top 50 predicted res
idue pairs as an example, ICCPred, GLINTER, and HDIContact achieve 
45, 12, and 29 correct residue pairs with precision rates of 90%, 58%, 
and 24%, respectively. Furthermore, the false positive contacts pre
dicted by ICCPred are predominantly proximal to the native contacts, as 
illustrated in the bottom panel of Fig. 3C. In Contrasty, the false positives 
of HDIcontact and GLINTER are far away from the native contacts, 
displayed in the bottom panels of Fig. 3A and B. 

3.2. Contribution analysis for different MSAs 

We designed the following test to analyze the contributions of three 
types of MSAs (i.e., GDS, PIS, and PPIS) in inter-chain contact predic
tion. First, we generate seven feature embeddings by feeding different 
MSAs to the ESM-MSA transformer, including three individual embed
dings from GDS, PIS, and PPIS, and four combination embeddings from 
GDS + PIS (GP), GDS + PPIS (GI), and PIS + PPIS (PP), GDS + PIS + PPIS 
(GSP), respectively, where “+” means that the individual feature em
beddings from different MSAs are concentrated as a combination 
embedding. Moreover, to demonstrate the strongness of the MSA feature 
embedding, we select the feature embedding of the single sequence from 
the ESM2 transformer [32] as a comparison baseline. Additionally, we 
use the recently proposed cascade MSA construction algorithm, i.e., 
cpxDeepMSA [30], to concentrate three individual MSAs as a combi
nation MSA (denoted as CPX), which is further fed to the ESM-MSA to 
extract the corresponding feature embedding, as another comparison 
baseline. Finally, each of the above-mentioned nine feature embeddings 
is fed to the designed deep residual network as an inter-chain contact 
prediction model, which is further benchmarked in our TS630 test 
dataset. 

Fig. 4 illustrates the performance of nine feature embeddings on the 
TS630 test dataset, where the detailed results are listed in Table S3. In 
comparison with the feature embedding of the single sequence from the 
ESM2 model, three individual MSA feature embeddings (i.e., GDS, PIS, 
and PPIS) from the ESM-MSA transformer separately achieve 309.3%, 
271.0%, and 397.8% average improvements in all of 12 evaluation 
metrics. This indicates that the MSA contains much more knowledge 
than the single sequence in the inter-chain contact prediction. Among 
seven in-house MSA feature embeddings, GSP consistently shows the 
best performance in all metrics, demonstrating that each of the three 

Fig. 2. ICCPred yielded robust performance and outperformed the GLINTER and HDIContact on the TS630 test dataset. (A) and (B) show the evaluation metrics with 
top N and top L/N, AUROC, and AUPR, respectively. 

Table 1 
Average precision in top N predicted contacts on TS047 dataset for three deep 
learning methods.  

Methods Top 1 Top 5 Top 10 Top 20 Top 50 Top 100 

ICCPred 0.669 0.636 0.609 0.566 0.509 0.457 
GLINTER 0.255 0.272 0.268 0.259 0.234 0.206 
HDIContact 0.660 0.583 0.560 0.538 0.509 0.461  
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MSAs helps improve contact prediction. Moreover, after removing PIS 
from GSP, the combination of the remaining two feature embeddings (i. 
e., GI) shows the worst performance in all four combination embed
dings, indicating that PIS makes the most contribution among the three 
MSAs in contact prediction. Additionally, GPS achieves an 8.6% average 
increase over CPX in all 12 metrics. Fig. S2 demonstrates that the GSP 
features outperform other MSA features in terms of AUROC, showing 
improvements of 25.2%, 1.7%, 6.6%, 6.6%, 2.9%, 1.1%, 0.8%, and 2.8% 
in comparison with ESM2, CPX, GDS, PPIS, PIS, PP, GP, and GI, 
respectively. This observation further means that the combination of 
MSAs shows better performance at the feature embedding level than the 
sequence level. 

Fig. 5 displays a representative protein complex (PDB ID: 1u5t), 
showcasing the superior performance of GSP compared to GDS, PIS, and 
PPIS. In the top 50 predicted contacts, GSP achieves a precision of 78%, 
while GDS, PIS, and PPIS separately exhibit a precision of 64%, 70%, 
and 56%. The best performance of GSP indicates that the knowledge 
among the three MSAs could be complementary to improve contact 
prediction accuracy. These data are consistent with the experiment re
sults in Fig. 4. 

4. Conclusions 

We have presented ICCPred, a novel deep learning model for inter- 
chain interface residue-residue contact predictions, which integrates 
multi-view MSA generation methodology with unsupervised protein 
language transformers. This model generates MSAs from three different 
biology views and transfers the co-evolutionary patterns learned by pre- 
training a protein language model to extract MSA 2D embeddings. The 
deep residual network is utilized to capture the environment context of 
residue pairs from the 2D MSA embedding feature for high-accuracy 
contact prediction. ICCPred was systematically benchmarked on three 
independent test datasets, showing superior performance over existing 
methods. The improvement of ICCPred can be attributed to two ad
vancements. First and most importantly, three types of MSA generation 
from different views provide complementary knowledge, extracted as 
the discriminative feature embeddings using the ESM-MSA transformer. 
Secondly, the designed deep residual network effectively captures the 
relationship between the MSA pattern and residue-residue contact. 

Despite the promising results, there is still room for further 
improvement. First, the feature embedding fusion strategy, currently 
used in ICCPred, simply concentrates all embeddings in serial mode, 
easily leading to information redundancy. Therefore, a more advanced 
feature fusion method may alleviate the negative impact caused by in
formation redundancy in our future work. Second, the recently proposed 
protein complex structure prediction models (e.g., AlphaFold-Multimer 
[33]) provide a promising way to further enhance the prediction of 
inter-chain contact. Studies along these lines are in progress. 
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Table 2 
Average precision in top L/K predicted contacts, AUPR, and AUROC on the TS047 dataset. ALL represents the number of native contacts on the target.  

Methods AUPR AUROC Top 

L/20 L/10 L/5 L/2 ALL 

ICCPred 0.272 0.832 0.575 0.531 0.491 0.424 0.310 
GLINTER 0.121 0.765 0.259 0.249 0.232 0.197 0.137 
HDIContact 0.250 0.831 0.556 0.519 0.492 0.413 0.285  

Table 3 
Performance comparison between ICCPred and six competing methods on 
TS032.  

Methods Top L/5 Top 50 Top 20 Top 10 Top 5 

Evcomplexa 0.096 0.144 0.216 0.266 0.096 
GremlinComplexa 0.147 0.260 0.412 0.528 0.147 
EVfolda 0.161 0.276 0.421 0.548 0.161 
CCMPreda 0.176 0.299 0.460 0.555 0.176 
ComplexContacta 0.385 0.504 0.605 0.659 0.385 
GLINTER 0.172 0.187 0.192 0.216 0.172 
ICCPred 0.564 0.626 0.668 0.684 0.564 

Note: a Experimental results excerpt from the reference [20], which only lists 
five evaluation metrics, including top L/5, 50, 20, 10, and 5 precision. 

Fig. 3. Illustrative examples for GLINTER (A), HDIContact (B), and ICCPred (C) on protein complex 6A7V at the top 50 predicted contacts. Native structures of two 
monomers are shown in green and cyan, respectively. True positives are depicted in red, while solid blue lines represent false positives. On the bottom of each panel, 
grey dots indicate naive contacts, red dots represent the true positives in the top 50 predicted contacts, and blue dots are false positives. 
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Fig. 4. Performance comparison between nine feature embeddings on the TS630 dataset.  

Fig. 5. An illustrative example of the protein complex (PDB ID: 1u5t) in the inter-chain contact prediction using four different feature embeddings, including GDS, 
PIS, PPIS, and GSP, as shown in panels (A), (B), (C), and (D), respectively. In each panel, the top 50 predicted contacts between two chains are displayed. Native 
structures of two monomers are shown in green and cyan, respectively. True positives are depicted in red, while false positives are represented by solid blue lines. On 
the upper-right side of each panel, grey dots indicate naive contacts, red dots represent the true positives in the top 50 predicted contacts, and blue dots are 
false positives. 
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