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A B S T R A C T   

X-ray crystallography is the major approach for atomic-level protein structure determination. Since not all 
proteins can be easily crystallized, accurate prediction of protein crystallization propensity is critical to guiding 
the experimental design and improving the success rate of X-ray crystallography experiments. In this work, we 
proposed a new deep learning pipeline, GCmapCrys, for multi-stage crystallization propensity prediction through 
integrating graph attention network with predicted protein contact map. Experimental results on 1548 proteins 
with known crystallization records demonstrated that GCmapCrys increased the value of Matthew’s correlation 
coefficient by 37.0% in average compared to state-of-the-art protein crystallization propensity predictors. 
Detailed analyses show that the major advantages of GCmapCrys lie in the efficiency of the graph attention 
network with predicted contact map, which effectively associates the residue-interaction knowledge with crys-
tallization pattern. Meanwhile, the designed four sequence-based features can be complementary to further 
enhance crystallization propensity proprediction.   

1. Introduction 

X-ray crystallography is the main approach for atomic-level protein 
structure determination. According to statistics, approximately 85% of 
protein structures deposited in the protein data bank (PDB) [1] are 
determined by X-ray experiments [2]. However, the X-ray crystallog-
raphy has a relatively low success rate less than 10% in structure 
determination [3]. This is mainly due to that many proteins cannot pass 
through all three successive stages in the overall protein crystallization 
process, including production of protein material, purification, and 
production of crystals. As a result, huge amounts of time and resources 
are wasted on non-crystallizable proteins that fail in the crystallization 
process, which restricts the accumulation rate of protein structures in 
PDB. To improve the efficiency and success rate of structure determi-
nation, it is necessary to develop efficient computational methods for 
protein crystallization propensity prediction. 

Current protein crystallization predictors are mainly driven by ma-
chine learning algorithms with sequence-based feature representations. 
These predictors can be roughly divided into two groups, including 
single-stage and multi-stage predictors. In the early period, single-stage 
pipelines dominated crystallization prediction and only focused on 

whether the query protein can pass through the overall crystallization 
process. For examples, SVMCRYS [4] fed the amino acid-based features 
to support vector machine (SVM) [5] for crystallization prediction; 
XtalPred [6] estimated the crystallization propensity through incorpo-
rating multiple predicted structure-based features with logarithmic 
opinion pool algorithm [7]. There are other classical single-stage 
models, including OB-Score [8], ParCrys [9], RFCRYS [10], XANNpred 
[11], Crysf [12] and TargetCrys [13]. However, these single-stage pre-
dictors have a common drawback, i.e., they cannot output the success 
rate of three successive steps of production of protein material, purifi-
cation, and production of crystals in the overall crystallization process. 

To overcome the defect of single-stage models, several multi-stage 
crystallization predictors have emerged to provide predictions for the 
success rate of the three stages as well as the overall crystallization 
process. To our best knowledge, there are five multi-stage models, i.e., 
PPCpred [14], PredPPCrys [15], Crysalis [16], fDETECT [17], and 
DCFCrystal [18], each of which utilizes the machine learning-based 
pipeline with multiple sequence-based feature representations to esti-
mate the success rate for individual crystallization stages. Taking 
DCFCrystal as an example, it used five complementary sequence-coding 
features as the input of the deep-cascade forest (DCF) [19] model to 
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output the crystallization propensity. 
Although the above-mentioned pipelines have made great progress 

in predicting multi-stage protein crystallization propensity, the corre-
sponding prediction accuracy is still not satisfactory. One of the major 
reasons is due to the lack of informative feature representation methods, 
as most of the approaches are based on simple hand-crafted feature 
representations, such as amino acid composition and physic-chemical 
properties which cannot fully extract the complex pattern of protein 
crystallization. To partly overcome this barrier, a few deep learning- 
based models, such as DCFCrystal and DeepCrystal [20], have been 
developed. Compared to traditional machine learning approaches, one 
advantage of deep learning technologies is that they can extract more 
discriminative feature representations from preliminary sequence using 
complex neural networks. Nevertheless, the deep learning-based crys-
tallization predictors still have room for further performance improve-
ment, because they cannot fully learn the interaction knowledge 
between amino acids highly associated with protein crystallization. 
Specifically, these methods learn the interaction knowledge of residues 
at sequence-level rather than structure-level. For example, DeepCrystal 
uses convolutional neural network (CNN) [21] to extract and fuse the 
interaction knowledge of residues in sequence-order. However, the 
residue-interaction knowledge at structure-level has a closer relation-
ship to protein crystallization than at sequence-level. Therefore, it is 
urgent to design an effective model to learn the residue-interaction 
knowledge at structure-level for enhancing protein crystallization 
prediction. 

In this work, we proposed a new deep-learning pipeline, GCmapCrys, 
for multi-stage crystallization propensity prediction. First, we used the 
protein contact map as the information source of residue-interaction at 
structure-level. Considering that the real contact map could be only 
calculated from native 3D structures which are unavailable for candi-
date proteins in crystallization prediction, we used PconsC4 [22] soft-
ware to predict the contact map. Meanwhile, we used four types of 
sequence-coding methods, which have achieved great success in crys-
tallization propensity prediction [8,13,14], to extract the feature rep-
resentations of residues, integrated with the contact map to form a 

protein graph. Finally, a recently proposed graph attention network 
(GAT) [23] was trained on the constructed protein graph to effectively 
associate residue-interaction knowledge with crystallization pattern. 
Experimental results on the benchmark dataset have demonstrated the 
following three points. First, the GAT trained on protein graph achieves 
a more significant performance than the CNN constructed on the pre-
liminary sequence in crystallization propensity prediction. Second, four 
sequence-based feature representations can be complementary to 
further enhance prediction accuracy. Finally, the proposed GCmapCrys 
outperforms state-of-the-art single- and multi-stage crystallization 
predictors. 

2. Materials and methods 

2.1. Graph representation of protein 

The primary sequence was transformed as a protein graph by inte-
grating the predicted contact map with sequence-based features. In this 
graph, the nodes and edges are amino acids and contact pathways, 
respectively, where the corresponding feature representations are 
sequence-based coding and predicted contact probability. Fig. 1 (a) 
shows the procedures for constructing the protein graph. 

2.1.1. Protein contact map prediction 
The protein contact map is a two-dimensional matrix consisting of 

0 and 1, where 1 means that two residues in a protein are in contact. 
Following the CASP (Critical Assessment of Structure Prediction) crite-
rion, two residues are defined as in contact if the Euclidian distance 
between their Cβ atoms (Cα in case of Glycine) is below 8.0 Å [24]. 
Considering that the proteins in crystallization prediction have no 
available 3D structures to calculate contact map, we used PconsC4 [22] 
software to predict contact map. Specifically, for a query sequence with 
length L, we used HHblits software [25] to search the UniClust30 [26] 
database to generate the corresponding multiple sequence alignment 
(MSA), which is further fed to PconsC4 for contact map prediction. In 
our benchmark dataset, the number of alignments for each protein 

Fig. 1. The workflow of GCmapCrys. (a) The procedures for constructing the protein graph. (b) Crystallization propensity prediction through integrating graph 
attention network with protein graph. 
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ranges from 1633 to 65,237. However, considering that PconsC4 soft-
ware cannot accept a single sequence as input, we have added the 
following procedures to enhance the robustness of GCmapCrys. Specif-
ically, if a query protein cannot hit any homologous sequences in MSA 
search during testing, GCmapCrys will generate a random homologous 
sequence with 99% sequence identity to query as the MSA to ensure that 
PconsC4 can output the corresponding predicted contact map. The 
output of PconsC4 is an L × L matrix, where the elements are the contact 
probability between amino acids in the input sequence. 

2.1.2. Protein graph 
The protein graph G is denoted as G = {V,E}: 

{
V = {vi},

E =
{

ei,j
⃒
⃒ ei,j > d

} (1)  

where V and E are sets of amino acid nodes and edges, respectively, vi is 
the i-th amino acid in the sequence, ei,j is the predicted contact proba-
bility between the i-th and j-th amino acids, and d is a preset cut-off 
value. In the work, we only consider the contact pathways whose pre-
dicted probability is higher than 0.3, i.e., d = 0.3. The number of nodes 
and edges are denoted as L and M, respectively. 

2.1.3. Graph feature representation 
We extracted the sequence-based features as the feature represen-

tations for nodes in the protein graph, which can be divided into four 
groups, including amino acid coding, position-specific scoring matrix, 
predicted structure-based coding, and physic-chemical property, as 
summarized in Table 1. 

2.1.3.1. Amino acid coding. We encoded the input protein sequence 
with length L as an L × 21 matrix using one-hot encoding [27], where 21 
is the number of amino acid types, including 20 standard amino acids 
and a non-standard amino acid. 

2.1.3.2. Position-specific scoring matrix. The position-specific scoring 
matrix (PSSM) [28] is an L × 20 matrix that contains the protein 
evolutionary information, where L is the length of the protein. We used 
PSI-BLAST [29] to generate PSSM by searching the SWISS-Prot database 
[30] via three iterations with 0.001 as the E-value cutoff. 

2.1.3.3. Predicted structure-based coding. We used the SCRATCH-1D 
software [31] to predict the secondary structure [32] and relative sol-
vent accessibility [33] for the query sequence. The predicted secondary 
structure (PSS) is encoded as an L × 8 matrix using one-hot encoding, 
where L is the length of the input sequence and 8 is the number of types 
of secondary structures. Additionally, the predicted relative solvent 
accessibility (PRSA) is an L × 1 matrix. 

2.1.3.4. Physic-chemical property. For an input sequence with length L, 
we encoded it as an L × 569 matrix through coding four physic-chemical 

properties, including protein length, isoelectric point (pI) [34], grand 
average of hydrophobicity (Gravy) [35], and 566 different 
physic-chemical amino acid attributes in the AAindex database [36]. 

In this work, the dimension of feature representation for each amino 
acid in protein graph is 21+ 20+ 9+ 569 = 619. 

2.2. Benchmark datasets 

The proposed methods are benchmarked in the BD_CRYS dataset, 
which was constructed by Zhu et al. [18]. BD_CRYS consists of four 
subsets (i.e., MF_DS, PF_DS, CF_DS, and CRYS_DS), which are separately 
used as the benchmark datasets for the prediction of three successive 
crystallization steps and overall crystallization process. Specifically, in 
MF_DS/PF_DS/CF_DS, the positive (or negative) samples are the proteins 
that can (or cannot) pass through the corresponding crystallization 
steps, i.e., production of protein material/purification/production of 
crystals. In CRYS_DS, the positives and negatives are the crystallizable 
and non-crystallizable proteins, respectively, where crystallizable pro-
teins can successfully pass through the overall crystallization process. 
Meanwhile, the sequence identity in each subset is reduced to 40% using 
CD-HIT software [37]. 

The performance of contact map prediction highly depends on the 
quality of MSA, which is measured by the normalized number of effec-
tive sequences (Nf) [38]. To relieve the negative effect caused by 
low-quality MSA in protein crystallizable prediction, we removed the 
proteins whose Nf is less than 128 in MSA. After this, the numbers of 
protein in MF_DS, PF_DS, CF_DS, and CRYS_DS are 15,476, 6389, 1994, 
and 15,476, respectively. For each dataset, we randomly selected 90% 
samples to train GCmapCrys model using five-fold cross-validation, and 
the remaining samples are used as the test dataset to evaluate the per-
formance of the model. Table 2 summarizes the compositions of four 
benchmark datasets. 

2.3. GCmapCrys architecture 

We proposed a new deep learning pipeline, GCmapCrys, to predict 
protein crystallization propensity through integrating graph attention 
network with predicted contact map, as shown in Fig. 1. 

The input of GCmapCrys is a query protein sequence, while the 
output is a confidence score for crystallization. First, the input sequence 
with length L is transformed as a protein graph consisting of L nodes 
(amino acids) and M edges (predicted contact pathways), where each 
node can be represented as a feature vector with 619 dimensions, as 
described in the section of “Graph representation of protein”. Then, the 
protein graph is fed to a graph attention network for crystallization 
prediction, which can be divided into the following three steps. (ⅰ) First, 
three consecutive graph attention layers are used to extract residue- 
interaction knowledge from the input protein graph. Specifically, we 
optimized node and edge features in each layer to make the whole 
protein graph more discriminative in crystallization. (ⅱ) Next, the opti-
mized protein graph is fed into a global pooling layer, which averages all 
node features to obtain the global mean feature vector for the whole 
graph. (ⅲ) Then, the global mean feature vector is fed to two consecutive 
fully connected layers, where the second layer uses Sigmoid function Table 1 

The description of sequence-based features used in GCmapCrys.  

Name Dimension Description 

Amino acid 
coding 

21 One-hot encoding of amino acids in protein 
sequence 

PSSM 20 Position specific scoring matrix 
Length 1 Sequence length 
AAindex 566 566 physic-chemical and biological properties in 

the AAindex database 
Gravy 1 The average hydrophobicity value of all amino 

acids 
pI 1 Isoelectric point 
PRSA 1 Predicted relative solvent accessibility 
PSS 8 One-hot encoding of predicted secondary structure  

Table 2 
The number of samples for MF_DS, PF_DS, CF_DS, and CRYS_DS datasets.   

Training Dataset Test Dataset 

NPa NGb NPa NGb 

CRYS_DS 998 12,930 111 1437 
MF_DS 4366 9561 486 1063 
PF_DS 1483 4266 165 475 
CF_DS 1301 493 145 55  

a NP is the number of positive samples. 
b NG is the number of negative samples. 
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[39] to output a confidence score for crystallization. 

2.3.1. Graph attention layer 
In the protein graph, the feature vector of the i-th amino acid node is 

denoted as xi ∈ RD, where D = 619. The feature vectors of all nodes 
jointly form a feature matrix X = [x1,x2,…,xL],X ∈ RD×L, where L is the 
length of the input sequence. Considering that different residue pairs 
contain different interaction information, the residues-interaction 
knowledge between the i-th and the j-th nodes is represented as a 
feature vector ei,j ∈ RF. Initially, ei,j is the predicted contact probability 
between the i-th and j-th amino acids, i.e., F = 1. The feature vectors of 
all edges jointly form a feature matrix E ∈ RF×M, where M represents the 
number of edges in the protein graph. 

In the graph attention layer, we used the attention mechanism to 
calculate the weight coefficients between the central node and corre-
sponding neighbor nodes. Then the weight coefficients are used to 
aggregate the spatial neighbor node features to extract the discrimina-
tive feature representation related to crystallization. The aggregation 
process is denoted as the process of optimizing node features. Mean-
while, considering the important role of edges in protein graph, we first 
optimized edge features and then used the optimized edge to help 
optimize the node features according to the graph message-passing al-
gorithm [40]. In the following paragraphs, we will describe the pro-
cedures for optimizing edge features and node features. 

2.3.1.1. Edge optimization. The information of edge ei,j is closely related 
to the information of the corresponding two nodes. Therefore, we 
optimized the feature of ei,j using xi and xj, where xi and xj represent the 
feature vectors for i-th and j-th nodes, respectively. The edge optimi-
zation operation can be formulated as: 

e′

i,j = σ
(
W
(
ei,j ‖ xi ‖ xj

))
, e′

i,j ∈ RF′

(2)  

where ‖ represents vector concatenation, i.e., ei,j and corresponding 
nodes xi, xj are concatenated to form a (F+ 2D)-dimensional feature 

vector, W ∈ RF′
×(F+2D) is a weight matrix, σ represents ReLU [41] 

nonlinear activation function. 

2.3.1.2. Node optimization. We optimized the central node features by 
aggregating neighbor node features. The aggregating process can be 
described as: 

x′

i = σ
(
∑

j∈N(i)

αi,jW1xj

)

, x′

i ∈ RD′

(3)  

where N(i) is the set of neighbor nodes corresponding to the i-th node, 
W1 ∈ RD′

×D is a weight matrix, σ represents ReLU nonlinear activation 
function, αi,j is the weight coefficients between i-th and j-th nodes that 
can be calculated by attention mechanism as follows: 

αi,j =
exp
(

σ
(

aT [ W1xi
⃦
⃦W1xj

⃦
⃦W2e′

i,j

]))

∑

t∈N(i)
exp
(
σ
(
aT [ W1xi ‖ W1xt ‖ W2e′

i,t
])) (4)  

where W2 ∈ RD′
×F′

is a weight matrix for e′

i,j, a ∈ R3D′

is a weight vector, 

•T represents transposition and σ represents LeakyRelu [42] nonlinear 
activation function. Moreover, we performed four attention mechanisms 
in parallel with different W1,W2, and a, which is helpful for the model to 
attend to various information from different representation subspaces. 
Then we could obtain four results of optimized node features, which are 
concatenated to obtain the final result x′

i ∈ R4D′

. 

2.3.2. Loss function 
We stacked three consecutive graph attention layers to improve node 

representation capabilities. After that, we performed global mean 
pooling on all nodes to represent the global information of the whole 
protein graph. Then, the global feature vector is fed to a classifier 
composed of two fully connected layers. Considering that the crystalli-
zation propensity prediction is a binary classification that can be divided 
into crystallizable and non-crystallizable, we used Sigmoid function to 
normalize the confidence score of crystallization in the last fully con-
nected layer. Finally, we used binary cross-entropy [43] to calculate the 
training loss: 

loss(y′

, y)=
1
N

∑N

n=1
−
[
yn ⋅ log y

′

n +(1 − yn) ⋅ log
(
1 − y′

n

)]
(5)  

where N is the batch size, yn ∈ {0,1} is the true label of the sample n, and 
y′

n is the confidence score of the sample n. The true label includes only 
two cases, 0 and 1, representing the negative and positive samples, 
respectively. 

2.3.3. Model parameters 
GCmapCrys model contains the following important hyper- 

parameters. First, from the view of model architecture, the dimensions 
F′ of optimized edge features and the dimensions D′ of optimized node 
features in the three consecutive graph attention layers are {4, 4, 4} and 
{16, 16, 16}, respectively. Meanwhile, the number of hidden units in the 
two fully connected layers are {32, 1}, respectively, where 1 is the 
dimension of the model output. Moreover, in the training phase, we used 
the five-fold cross-validation approach to train the GCmapCrys model, 
where the batch size, learning rate, and max-epoch are 64, 0.001, and 
200, respectively. To prevent overfitting, we used L2 regularization with 
a decay factor of 0.001 and performed early stopping if the validation 
error kept increasing for 5 consecutive epochs. 

2.3.3.1. Performance evaluation. Following the previous works [18,20], 
we used Matthew’s correlation coefficient (MCC), sensitivity (Sen), 
specificity (Spe), and accuracy (Acc) as the metrics to evaluate the pro-
posed methods. The formulas of these metrics are described as follows: 

Sen=TP / (TP+FN) (6)  

Spe= TN / (TN +FP) (7)  

Acc=(TP+ TN) / (TP+FP+ TN +FN) (8)    

where TP, FP, TN, and FN denote true positives, false positives, true 
negatives, and false negatives, respectively. The above-mentioned four 
indices are threshold-dependent. Therefore, it is important to select an 
appropriate threshold for fair comparisons among various methods. In 
this study, the threshold T was chosen, which maximizes MCC on the 

MCC=(TP× TN − FP×FN)
/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(TP + FP) × (TN + FN) × (TP + FN) × (TN + FP)
√

(9)   
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training datasets over five-fold cross-validation. Additionally, the area 
under the receiver operating characteristic curve (AUC) [44] was used 
as another important evaluation index. 

3. Results and discussion 

3.1. Comparison with the single-stage crystallization propensity predictors 

We compared GCmapCrys against three state-of-the-art single-stage 
crystallization propensity predictors, including TargetCrys [13], ParCrys 
[9], and OB-Score [8], on CRYS_DS test dataset. OB-Score calculated the 
confidence score for crystallization propensity using pI and Gravy fea-
tures. ParCrys predicted the crystallization probability through inte-
grating a Parzen window probability density function [45] with amino 
acid composition-based features. TargetCrys trained a two-layer SVM 
model embedded with multiple sequence-based features in crystalliza-
tion propensity prediction. For each competing predictor, we down-
loaded the third-party software and re-implemented the corresponding 
program on our test dataset. Table 3 summarizes the performance 
comparison between GCmapCrys with three existing predictors, while 
Fig. 2 illustrates the ROC curves for the three single-stage predictors and 
our new GCmapCrys predictor. 

From Table 3, we found that the proposed GCmapCrys shows 
significantly better performance than other predictors in terms of Spe, 
Acc, MCC and AUC. Specifically, in comparison with the second-best 
performer, i.e., OB-Score, GCmapCrys shares 34.3% improvements for 
MCC with p-values ≤ 2.2e-06. Meanwhile, as depicted in Fig. 2, 
GCmapCrys achieves an AUC value of 0.895 that is 23.9%, 28.0% and 
28.7% higher than OB-Score, ParCrys and TargetCrys, respectively. 
Moreover, GCmapCrys achieves the overall accuracy with 0.931 and 
specificity with 0.960, which are separately 49.0% and 54.8% higher 
than the other three predictors on average. It cannot escape our notice 
that OB-Score gains the highest sensitivity of 0.937 among the four 
methods while with the lowest specificity of 0.321. The underlying 
reason is that OB-Score predicts too many negative samples as positives. 
Together with the fact that the number of negatives is much larger than 
that of positives, OB-Score shows a lower overall performance with 
respect to MCC in the whole test dataset. 

3.2. Comparison with the multi-stage propensity predictors 

We further compared the proposed GCmapCrys with the existing 
multi-stage predictors, including PPCpred [14], fDETECT [17], and 
Crysalis [16], where Crysalis consists of two versions, named CrysalisI 
and CrysalisII, respectively. Specifically, we trained the GCmapCrys 
sub-models on MF_DS, PF_DS, CF_DS, and CRYS_DS training datasets and 
benchmarked the performances on the corresponding test datasets for 
the prediction of production of protein material, purification, produc-
tion of crystals, and the overall protein crystallization process, respec-
tively. For each competing method, the prediction results were 
generated by the corresponding web server. Table 4 illustrates the per-
formance comparison between GCmapCrys with four competing 
multi-stage predictors on MF_DS, PF_DS, CF_DS, and CRYS_DS test 
datasets. 

From Table 4, we found that our proposed GCmapCrys achieves the 

best results on Acc, MCC, and AUC metrics in all four test datasets. 
Specifically, GCmapCrys achieves 12%, 22.9%, 22.7%, and 31.6% 
average improvement in MCC on the four test datasets, respectively, all 
better than other predictors with p-values ≤ 4.7e-03. Meanwhile, by 
observing Fig. 3 which shows the ROC curves for five multi-stage pre-
dictors on MF_DS, PF_DS, CF_DS, and CRYS_DS test datasets, we found 
that our GCmapCrys model achieves the highest AUC values in all four 
datasets. This observation demonstrates the optimal overall perfor-
mance of our model in all crystallization stages. Additionally, GCmap-
Crys achieves the highest Spe values of 0.840 and 0.960 on PF_DS and 
CRYS_DS test datasets, respectively, which shows that our model has a 
higher prediction accuracy for negative samples in the purification step 
and the overall protein crystallization process. It should be noted that 
CrysalisI has the highest Sen of 0.979 but achieves a very low Spe of 
0.073 on the CF_DS test dataset. Meanwhile, CrysalisII has the highest 
Spe of 1.000 but also has the lowest Sen of 0.055 on the CF_DS test 
dataset. As a result, CrysalisI and CrysalisII both gain lower MCC values 
in CF_DS dataset. 

The above-mentioned experimental results show that our proposed 
GCmapCrys model indeed outperforms other competing single- and 
multi-stage models, which is mainly due to the following two factors. 
First, we employed the graph attention model to deal with the protein 
graph which is converted from the predicted protein contact map. On 
the one hand, the contact map provides valuable residue-interaction 
knowledge at structural-level. On the other hand, the designed graph 
attention model can more effectively associate the residue-interaction 
knowledge with crystallization pattern than the deep-learning models 
directly trained on preliminary sequences, such as CNN. The second 
factor is the use of multiple complementary sequence-based features, 
including amino acid coding, position-specific scoring matrix, predicted 
structure-based coding, and physic-chemical property. These sequence- 
based features have been proved to be very helpful for crystallization 
prediction by many previous methods [14,18,46,47] and can be 

Table 3 
Performance comparison between GCmapCrys with existing single-stage predictors on CRYS_DS test dataset.  

Model Sen Spe Acc MCC AUC p-values (MCC) p-values (AUC) 

OB-Score 0.937 0.321 0.365 0.153 0.656 2.2e-06 2.1e-06 
ParCrys 0.712 0.516 0.530 0.118 0.615 1.4e-06 1.1e-06 
TargetCrys 0.802 0.399 0.428 0.107 0.608 1.3e-06 9.6e-07 
GCmapCrys 0.550 0.960 0.931 0.496 0.895 - - 

Note: The best results are shown in bold. p-values are obtained by one-side t-test to compare GCmapCrys with the competing models on the MCC and AUC metrics. ‘-’ 
means that the corresponding value is not available. 

Fig. 2. The ROC curves for four single-stage predictors on CRYS_DS 
test dataset. 
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complementary. We will demonstrate the effectiveness of the 
above-mentioned two factors through the following computational 
experiments. 

3.3. Graph attention network with predicted contact map helps to improve 
crystallization prediction 

To examine the effectiveness of the proposed graph attention 
network driven by the predicted contact map, we compared our model 

Table 4 
Performance comparison between GCmapCrys with four multi-stage predictors on MF_DS, PF_DS, CF_DS, and CRYS_DS test datasets.  

Dataset Model Sen Spe Acc MCC AUC p-values (MCC) p-values (AUC) 

MF_DS PPCpred 0.657 0.537 0.619 0.184 0.628 8.8e-06 1.5e-06 
fDETECT 0.440 0.819 0.531 0.216 0.650 2.3e-05 3.7e-06 
CrysalisI 0.599 0.631 0.621 0.215 0.639 2.2e-05 2.3e-06 
CrysalisII 0.609 0.639 0.629 0.232 0.651 4.2e-05 3.8e-06 
GCmapCrys 0.537 0.794 0.713 0.332 0.755 - - 

PF_DS PPCpred 0.754 0.491 0.686 0.231 0.667 2.7e-05 8.8e-06 
fDETECT 0.413 0.776 0.506 0.171 0.622 8.5e-06 2.3e-06 
CrysalisI 0.376 0.781 0.677 0.157 0.600 6.8e-06 1.3e-06 
CrysalisII 0.624 0.661 0.652 0.254 0.655 4.7e-05 5.9e-06 
GCmapCrys 0.600 0.840 0.778 0.432 0.817 - - 

CF_DS PPCpred 0.296 0.917 0.749 0.273 0.654 4.7e-03 3.2e-03 
fDETECT 0.291 0.883 0.720 0.209 0.594 1.1e-03 3.3e-04 
CrysalisI 0.979 0.073 0.730 0.126 0.499 3.0e-04 3.9e-05 
CrysalisII 0.055 1.000 0.315 0.126 0.527 3.0e-04 6.5e-05 
GCmapCrys 0.855 0.545 0.770 0.410 0.766 - - 

CRYS_DS PPCpred 0.324 0.876 0.836 0.150 0.669 2.1e-06 2.7e-06 
fDETECT 0.649 0.727 0.721 0.211 0.718 4.9e-06 7.9e-06 
CrysalisI 0.667 0.673 0.672 0.184 0.705 3.3e-06 5.7e-06 
CrysalisII 0.685 0.647 0.650 0.177 0.712 3.0e-06 6.8e-06 
GCmapCrys 0.550 0.960 0.931 0.496 0.895 - - 

Note: The best results are shown in bold. p-values are obtained by one-side t-test to compare GCmapCrys with the competing multi-stage models on the AUC and MCC 
metrics. ‘-’ means that the corresponding value is not available. 

Fig. 3. The ROC curves for five multi-stage predictors based on (a) MF_DS test dataset; (b) PF_DS test dataset; (c) CF_DS test dataset; (d) CRYS_DS test dataset.  

P.-H. Wang et al.                                                                                                                                                                                                                               



Analytical Biochemistry 663 (2023) 115020

7

with the single-stage DeepCrystal [20], which uses the one-hot encoding 
of amino acids as the input of convolution neural network model to 
output the crystallization propensity. Specifically, we re-trained the 
DeepCrystal model on the CRYS_DS training dataset and benchmarked it 
on the corresponding test dataset. In order to eliminate the influence of 
the input features, we implemented two feature representations, deno-
ted as FR_I and FR_II, each of which is used in both DeepCrystal and 
GCmapCrys. FR_I is the one-hot encoding of amino acids, while FR_II is 
the combination of four designed sequence-based features, as described 
in the section of “Graph feature representation”. Table 5 summarizes the 
performance comparison between DeepCrystal and GCmapCrys with 
two feature representations on CRYS_DS test dataset. 

We found that our GCmapCrys model outperforms DeepCrystal with 
respect to Acc, AUC, and MCC metrics in each feature representation. 
Specifically, in FR_I (i.e., one-hot encoding of amino acids), GCmapCrys 
achieves an MCC value of 0.255 and an AUC value of 0.807, which are 
0.9% and 2.7% higher than DeepCrystal, respectively. Meanwhile, 
GCmapCrys achieves 9.1% and 3.1% enhancements of AUC and MCC in 
FR_II (the combination of four sequence-based features), respectively, 
better than the DeepCrystal model with p-values ≤ 8.6e-03. These re-
sults demonstrate that the graph attention model trained on the con-
structed protein graph can more effectively associate the residue- 
interaction knowledge with crystallization pattern than the CNN 
model directly trained on preliminary sequence, regardless of the use of 
feature representations. 

3.4. Contribution analysis of multiple complementary sequence-based 
features 

We performed ablation experiments on the combination of sequence- 
based features to further analyze the contribution of different features. 
In this work, the features are divided into four groups: amino acid 
coding (AAC), position-specific scoring matrix (PSSM), predicted 
structure-based coding (PSBC), and physic-chemical property (PCP), 
which are jointly combined as a feature representation, denoted as 
APSC. Here, we constructed four feature combinations by separately 
removing AAC, PSSM, PSBC, and PCP from APSC which are denoted as 

PSC, ASC, APC, and APS, respectively. For each feature combination, we 
re-trained the GCmapCrys on CYRS_DS training dataset and bench-
marked it on the corresponding test dataset. Fig. 4 shows the prediction 
performance of GCmapCrys via five feature combinations on CYRS_DS 
test dataset. 

It can be found that the MCC values of PSC, ASC, APC, and APS are 
separately decreased by 6.6%, 5.4%, 18%, and 6.9% in comparison with 
the values yielded by APSC. Meanwhile, the corresponding AUC values 
are dropped by 3%, 1.9%, 6%, and 2.3%, respectively. Two conclusions 
can be drawn from the above observations. First, the proposed four types 
of sequence-based feature representations both help to improve crys-
tallization prediction. Second, the designed PSBC feature makes the 
greatest contribution among the four feature representations, which 
further indicates that protein crystallization is highly associated with 
predicted structure-based features. 

4. Conclusions 

In this paper, we proposed a new deep-learning method, GCmapCrys, 
for multi-stage protein crystallization propensity through integrating 
graph attention network (GAT) with predicted contact map. Experi-
mental results on the large-scale dataset have demonstrated that the 
proposed GCmapCrys achieves significantly better performance than 
state-of-the-art single- and multi-stage predictors. Detailed analyses 
show that the advantage of GCmapCrys is mainly attributed to two as-
pects. First, the designed graph attention network with predicted contact 
map can effectively associate residue-interaction knowledge with crys-
tallization pattern at structure-level. Second, the use of four sequence- 
based features can be complementary for further improving crystalli-
zation prediction. 

Despite the encouraging performance, there is still considerable 
room for further improvements. First, since GCmapCrys needs to 
generate predicted protein contact map and multiple sequence-based 
features for the query protein, the overall prediction process will take 
a long time. In the future work, we will try to use multiple servers to 
concurrently speed up the computation. Moreover, the prediction ac-
curacy of our GCmapCrys is limited by the accuracy of the predicted 

Table 5 
Performance comparison between GCmapCrys and DeepCrystal with two feature representations on CRYS_DS test dataset.  

Feature representation Model Sen Spe Acc MCC AUC p-values (MCC) p-values (AUC) 

FR_Ia DeepCrystal 0.523 0.844 0.821 0.246 0.780 5.4e-03 1.6e-03 
GCmapCrys 0.468 0.879 0.850 0.255 0.807 - - 

FR_IIb DeepCrystal 0.369 0.972 0.928 0.395 0.870 9.5e-05 8.6e-03 
GCmapCrys 0.541 0.959 0.929 0.486 0.901 - - 

Note: The best results are shown in bold. p-values are obtained by two-side t-test to compare GCmapCrys and DeepCrystal on the AUC and MCC metrics. ‘-’ means that 
the corresponding value is not available. 

a FR_I only includes the one-hot encoding of amino acids. 
b FR_II includes all sequence-based features shown in Table 1. 

Fig. 4. The prediction performance of GCmapCrys via five feature combinations on CYRS_DS test dataset.  
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contact map due to the unavailability of the real protein contact map for 
candidate proteins in crystallization prediction. In the future, we will 
design the new tool for high-accuracy protein contact prediction. Studies 
along these lines are under progress. 
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• We used predicted protein contact map as information source of 
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tations to further enhance prediction accuracy. 
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