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Abstract. Transcription factor binding site (TFBS), one of the DNA-
protein binding sites, plays important roles in understanding regulation
of gene expression and drug design. Recently, deep-learning based meth-
ods have been widely used in the prediction of TFBS. In this work,
we propose a novel deep-learning model, called Combination of Multi-
Scale Convolutional Network and Long Short-Term Memory Network
(MCNN-LSTM), which utilizes multi-scale convolution for feature pro-
cessing, and the long short-term memory network to recognize TFBS
in DNA sequences. Moreover, we design a new encoding method, called
multi-nucleotide one-hot (MNOH), which considers the correlation be-
tween nucleotides in adjacent positions, to further improve the predic-
tion performance of TFBS. Stringent cross-validation and independent
tests on benchmark datasets demonstrated the efficacy of MNOH and
MCNN-LSTM. Based on the proposed methods, we further implement
a new TFBS predictor, called DeepTF. The computational experimen-
tal results show that our predictor outperformed several existing TFBS
predictors.
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1 Introduction

Accurate prediction of transcription factor binding site (TFBS) from DNA se-
quences is critical for regulation of gene expression and drug design [1]. Tra-
ditionally, researchers identified TFBS through biochemical methods, such as
ChIP-seq [2] and ChIP-chip [3]. However, these methods are time-consuming and
laborious, that cannot keep up with relevant research advances in the postge-
nomic era. Hence, many intelligent computational methods, such as traditional-
machine-learning-based ones and deep-learning-based ones, have been proposed
and achieved outstanding performance in the task of predicting TFBS [4].
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Traditional-machine-learning-based methods [5-7] led to trends in the field of
early TFBS prediction. Wong et al. [6] proposed kmerHMM, which used Hidden
Markov Models (HMMs) to derive precise TFBS. Fletez-Brant et al. [5] devel-
oped kmer-SVM, which used a support vector machine with k-mer sequence fea-
tures to identify predictive combinations of short TFBS. Nevertheless, there are
more and more datasets related to transcription factors in the postgenomic era,
and traditional-machine-learning-based methods have been unable to quickly
and effectively predict TFBS in DNA sequences due to that they are designed
for small-scale dataset [8].

Recently, deep-learning-based models [9, 10] have achieved good performances
in prediction of TFBS. For example, Alipanahi et al. [9] implemented Deep-
Bind, ascertaining sequence specificities from experimental data with Convolu-
tional Neural Network (CNN) [11], to identify TFBS in DNA sequences. Next,
CNN-Zeng was presented by Zeng et al.[10], which adopted CNN to capture the
sequence-based features which are critical to accurate characterization of TFBS.

Although these methods have achieved remarkable performance in predic-
tion of TFBS [12], there is still room for further enhancing the performances as
the following two points. Firstly, these methods only take consideration of the
independent relationship among nucleotides in TFBS and ignore the interdepen-
dence of nucleotides in the sequence. Taking DeepBind [9] as an example, which
used one-hot to represent DNA sequences, it ignores the relationship between
adjacent nucleotides. However, studies [13] have shown that considering the cor-
relation between nucleotides in adjacent positions can effectively promote the
prediction performance. Secondly, many CNN-based models employ a fixed-size
convolution kernel to identify TFBS in DNA sequences. For example, CNN-Zeng
take the fixed kernel size 24 when do prediction. However, it has a limitation
that the length of the TFBS in the model is fixed. It is well known that different
kinds of TFBS have different binding lengths [14]. Therefore, it will be useful to
employ multiple size of convolutional kernels to capture multi-scale features.

In this work, we first propose a new encoding method, multi-nucleotide one-
hot (MNOH), which takes account of the correlation between nucleotides in
adjacent positions. Moreover, we design a new deep learning architecture, called
Combination of Multi-Scale Convolutional Network and Long Short-Term Mem-
ory Network (MCNN-LSTM), which uses multi-scale convolution layers for fea-
ture processing, and then uses Long Short-Term Memory Network (LSTM)[15]
as a recurrent model that recognizes TFBS in DNA sequences [16]. Based on
above, we further implement a TFBS predictor, called DeepTF. Stringent cross-
validation and independent tests on benchmark datasets have demonstrated the
efficacy of our proposed methods.

2 Materials and Methods

2.1 Benchmark Datasets

We used 690 ChIP-seq datasets, constructed in CNN-Zeng [10] as benchmark
datasets to evaluate the proposed method. The positive set consisted of the cen-
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tering 101 bps that overlaps one TFBS, which have more than 40 000 binding
events, while the negative set was 101bp sequences, which do not bind to tran-
scription factor. For each dataset, we use 70% for training, 10% for validating
and the remaining 20% for testing.

2.2 Feature Representation

We use the MNOH encoding method to convert DNA sequences into feature
matrixes. Specifically, for one DNA sequence S = (s1, S2,...5,) with the length
of n , we have s; € A(adenine),C(cytosine), G(guanine), T (thymine), which
means s; can be any one of the 4 nucleotide bases in DNA. MNOH encodes it
as a matrix, denoted as Zy oy, as follows:

Zyunon =21 Z2 -+ Zp—nt1)
21,1 21,2 s 21,40
22,1 222ttt Z4h (1)
Zn—h+1,1 En—h+1,2 " *° Zn—h+1,4"

Where h represents the degree of MNOH, Z; represents an one-hot vector of the
i-th (i =1,2,...,n — h+ 1) nucleotide in DNA sequence, and z; ; is the value of
j-th position in vector Z;, which is defined as follows:

. J1 whenj= APV f(si) + 472 f(sign) + o 40 (sin-1) @)
" 0 others

Where f(s;) represents the function corresponding to the nucleotide at the i-th
position in the DNA sequence. The specific definition of f(s;) is in eq. (3):

1 when s; = A

2 when s; =C
) = 3
F(si) 3 when s; =G ®)

4 when s; =T

Finally, each DNA sequence can be encoded into a (n — h + 1) x 4" matrix.
The one-hot encoding method is a special kind of the MNOH when A = 1 . That
means we only consider each individual nucleotide, and each nucleotide in the
DNA sequence is denoted as one of the 4 one-hot vectors, i.e., [1, 0, 0, 0], [0,
1, 0, 0], [0, O, 1, 0] and [0, O, O, 1]. Furthermore, when h = 2, MNOH takes
the dependencies between two adjacent nucleotides into account, which has 16
dinucleotides totally, i.e., [AA AC AG AT CA CC CG CT GA GC GG GT TA
TC TG TT]. As shown in eq. (2), these dinucleotides can be denoted as one of
the 16 one-hot vectors, i.e., [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, O,
0,0,0,0,0,0,0,0,0,0,0, 0],.., and [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1].

However, as the degree of MNOH increases, the dimension of the vector will
rise at the same time. Hence, the GPU memories consumed by the model will
increase and the calculations will drop. Due to the limitation of GPU memory,
we only evaluate the performances of MNOH with degree less than five.
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2.3 Model Architecture

In this section, we introduce a novel deep learning model, named MCNN-LSTM,
by combining multi-scale CNN with LSTM. Fig. 1 illustrates the workflow of
MCNN-LSTM, which consists of three parts, i.e., multi-scale convolutional layer,
LSTM network layer and fully-connected (fc) layer. Firstly, the input DNA se-
quence is encoded into a (n — h + 1) x 4" matrix, by MNOH. Then, this matrix
is passed on to the multi-scale convolutional layer, and each sublayer scans the
output of the previous sublayer through convolutional kernels of different sizes.
In other words, this layer can be thought of as feature extractors, which can cap-
ture the features of TFBS of different lengths. Next, we use LSTM as a recurrent
model that recognizes TFBS in DNA sequences. At last, the fc layer takes the
outputs of the LSTM network and produces two classification results.

Multi-scale convolution
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Fig. 1. The architecture of CNN-LSTM model.

Multi-scale CNN. The first part contains three multi-scale CNN layers, and
each layer consists of three sublayers with different kernel sizes. Specifically, each
sublayer contains convolution, rectified linear unit (ReLU) [17], batch normaliza-
tion (BN) and max-pooling layer. Moreover, these sublayers separately capture
different local features of the DNA sequences and produce multi-scale outputs.
In light of this, we use the average of the three outputs as inputs for the subse-
quent layers. In addition, fused features from CNN layers with multiple kernels
sizes will be more distinguishable than that from single convolutional kernel.

Here, the multi-scale CNN layers are introduced, which play an important
role when processing DNA sequence features. After inputting the matrix Zy von,
the implementation of the convolutional part is as follows:

m 4h.

Xk = Z Z Zigj i My 51 4 by (4)

j=11=1
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Where ¢ € [1,n+m — h] and k € [1,d], d is the number of convolution kernels,
M is the kernel of convolution, by represents the bias term, m represents the size
of the convolutional kernel, and h represents the degree of MNOH.

We then feed X into ReLU [17] activation function to alleviate the problem of
overfitting. Next, we add BN to speed up the training of the model and improve
the prediction accuracy of the model. The final layer is a max-pooling layer. This
layer only picks out the maximum value of its respective previous layer outputs.
The function of the max-pooling process is reducing the amount of computation.

LSTM network layer. As we know, the TFBS is a fragment in the DNA se-
quence. Hence, the TFBS prediction can be interpreted as a sequence prediction
problem. In recent years, LSTM networks have been widely used for sequence
tasks, such as speech recognition [18] and language translation tasks [19].

fi = U(Wf[htfl,l‘t] + bf)
iy = o (Wilhs—1, 2] + b;)
Ct = ftCt—l + ittcmh(Wc[ht_l, I’t] =+ bc) (5)
01 = o(Wolhs—1,24] + bo)
ht = oitanh(Cy)

The process of LSTM is above. Where x; is the current input, 4; is the input
gate at time t, h; is the hidden state, C; is the cell state at time ¢, f; is the
forget gate, o is the sigmoid function and the o, is the output gate, bs, b;, bc
and b, is bias terms. Moreover, the weight matrix W subscripts have the obvious
meaning. For instance, Wy is the forget gate matrix, W; is the input gate matrix.

Fc layer. The final part contains the fc layer with a dropout [20] regularization
and a softmax activation function. The dropout is used to randomly mask por-
tions of its output to avoid overfitting and softmax function is used to transform
the output into a probability distribution over two classes.

2.4 Evaluation metric

In this study, we choose Sensitivity (Sen), Specificity (Spe), Accuracy (Acc) and
the Matthews correlation coefficient (MCC) to evaluate the performance of the
method [21], which are defined as follows:

Sen =TP/(TP + FN)
Spe =TN/(TN + FP)
Acc = (TP +TN)/(TP + FP + TN + FN) (6)
(TP x TN — FP x FN)

V(TP + FP)x (TN + FN) x (TP + FN) x (TN + FP)
Where TP, TN, FN and F P means true positives, true negatives, false negatives
and false positives.

MCC =
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We further employ another evaluation metric, the area under the receiver
operating characteristic curve (ROC), called AUC [22]. The value of AUC is
between 0 and 1. The closer AUC tends to 1, the better the predictor.

3 Results

3.1 Comparisons among CNN-LSTM, CNN, and LSTM

Recently, CNN and LSTM have been adapted to the task of predicting TFBS. To
demonstrate the efficacy of CNN-LSTM, we compare it with CNN and LSTM.
Note that all of the three models use the simplest one-hot encoding method.
Moreover, we randomly select five datasets from all 690 ChIP-seq datasets,
namely A549, GM12878, Hela, Hep-G2 and H1-hESC, as benchmark datasets.
For each dataset, we separately train three models on the corresponding training
dataset, and evaluate the performances of these models on the test datasets. In
the remaining experiments, we take the same setting which afore-mentioned.

Table 1. Ablation study of CNN-LSTM, CNN and LSTM.

Dataset Model  Sen(%) Spe(%) Acc(%) MCC AUC

CNN-LSTM 59.3 82.0 76.1 0.518 0.831
A549 CNN 64.7 79.8 72.7 0.449 0.804
LSTM 66.5 44.1 55.6 0.109 0.619

CNN-LSTM 67.2 77.3 77.2 0.545 0.854
GM12878 CNN 69.5 69.3 74.1 0.480 0.826
LSTM 76.6 59.8 60.7 0.213 0.645

CNN-LSTM 62.5 84.6 80.3 0.604 0.801
Hela CNN 66.9 80.7 69.9 0.387 0.773
LSTM 75.7 33.9 56.2 0.112 0.567

CNN-LSTM 72.6 80.9 76.8 0.617 0.844
Hep-G2 CNN 75.1 76.9 71.5 0.536 0.781
LSTM 76.9 68.5 67.3 0.487 0.672

CNN-LSTM 82.2 77.7 80.0 0.599 0.885
H1-hESC CNN 79.2 71.4 75.5 0.481 0.793
LSTM 70.5 72.8 68.4 0.364 0.619

From Table 1, we find that CNN-LSTM performs better than both CNN
and LSTM. As for CNN, the four evaluation metrics (i.e., Spe, Acc, MCC and
AUC) of CNN-LSTM are 4.9%, 5.4%, 11.0% and 4.8% higher on average than
CNN on the five datasets, respectively. Although the Sen of CNN-LSTM are
lower than CNN on four out of five datasets (i.e., A549, GM12878, Hela, Hep-
G2), the corresponding Spe, Acc, MCC and AUC values of CNN-LSTM are
relatively higher. The underlying reason is that too many false positive example
in CNN. The similar observations can also be obtained on LSTM. For example,
the CNN-LSTM on Hela dataset achieves a Spe of 84.6%, an Acc of 80.3%, a
MCC of 60.4% and an AUC of 80.1%, which are 50.7%, 24.1%, 49.2% and 23.4%,
respectively, higher than LSTM.

To further investigate the effectiveness of the CNN-LSTM, we implement
three models on all 690 ChIP-seq datasets. Fig. 2 summarizes the distribution of
AUC:s of these models. The red dotted line indicates the median value of AUCs.
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It is easy to see that the distribution of the AUCs of CNN-LSTM on bench-
mark datasets is significantly higher than both CNN and LSTM. Moreover, it
can be clearly observed from Fig. 2 that the median AUC of CNN-LSTM is
0.812, while the median AUC of CNN is 0.764 and LSTM is 0.527. Considering
that the benchmark datasets contain 690 ChIP-seq datasets, these experimental
results show the superiority of the CNN-LSTM we proposed.

Lo
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Fig. 2. The distribution of AUCs on 690 ChIP-seq datasets.

These findings indicate that CNN-LSTM can effectively improve the predic-
tion accuracy for predicting TFBS in this study. One side, CNN has made great
achievements in task of predicting TFBS, by which the binding preferences of
transcription factor can be well characterized. Moreover, CNN layers with ker-
nel size of 24 scans the input sequence, which aims to extract features of the
TFBS. On the another side, LSTM has proved to be effective in the processing
of sequence features. The LSTM network layer can take its advantages to deal
with sequence features to predict the TFBS in DNA sequences.

3.2 MNOH helps to improve the prediction performance

In this section, we will choose the optimal degree h of MNOH and prove the
efficacy of MNOH. Specifically, we employ MNOH with four different degrees of
MNOH, i.e. 1, 2, 3 and 4, denoted as INOH, 2NOH, 3NOH and 4NOH, respec-
tively, to extract features from DNA sequences, which are used as the inputs
of CNN-LSTM. Therefore, these CNN-LSTM models with inputs generated by
different h are denoted as C-L-1NOH, C-L-2NOH, C-L-3NOH, and C-L-4NOH.
Similarly, we select the five datasets above as benchmark datasets. Table 2 sum-
marizes the contrast results of the models on five datasets.

According to Table 2, we can draw two mainly conclusions as follows.

Firstly, INOH has the worst results. Using A549 dataset as an example, in
terms of Acc, MCC and AUC three metrics, 2NOH achieves 1.7%, 2.8% and
2.1% better than 1INOH respectively. SNOH is 1.0%, 0.8% and 1.8% better than
1INOH. 4NOH achieves 0.7%, 0.2% and 1.0% respectively, better than 1INOH.
Similar observations can also be obtained on other datasets. The underlying
cause of this phenomenon is that the higher h, the more comprehensive the
sequence characteristics obtained. For example, 2NOH considers the correlation
between nucleotides in two adjacent positions.
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Table 2. Ablation study of MNOH.

Dataset Model  Sen (%) Spe (%) Acc (%) MCC AUC

C-L-1INOH 59.3 82.0 76.2 0.518 0.831
A549 C-L-2NOH 62.0 79.6 77.9 0.546 0.852
C-L-3NOH  60.3 81.1 77.2 0.526 0.849
C-L-4NOH 61.6 80.1 76.9  0.520 0.841

C-L-1INOH 67.2 77.3 77.2 0.545 0.854
GM12878 C-L-2NOH  69.9 89.4 80.8 0.604 0.872
C-L-3NOH 78.1 82.6 80.4 0.577 0.863
C-L-4NOH 75.9 80.3 78.2  0.582 0.867
C-L-1INOH 62.5 84.6 80.3 0.604 0.801

Hela  C-L-2NOH 74.4 79.2 83.4 0.506 0.822
C-L-3NOH 70.8 77.5 82.2  0.483 0.819
C-L-4NOH 67.8 82.0 83.5 0.503 0.824
C-L-1INOH 72.6 80.9 76.8 0.617 0.844

Hep-G2 C-L-2NOH  66.3 83.6 78.6 0.635 0.857
C-L-3NOH  70.2 81.8 77.1  0.621 0.851
C-L-4NOH 67.4 82.5 77.8 0.629 0.855
C-L-1INOH 82.2 7T 80.0 0.599 0.885

HI1-hESC C-L-2NOH 76.1 83.5 81.4 0.613 0.898
C-L-3NOH 77.8 82.0 81.1 0.610 0.893
C-L-4NOH 79.2 81.5 80.7 0.604 0.889

Secondly, 2NOH is a better choice in this study for encoding the DNA se-
quences. By revisiting Table 2, we observe that when h is higher than 2, the
performance is not significantly improved, even deteriorate. For instance, 2NOH
achieves the prediction results with an Acc of 83.4%, a MCC of 50.6% and an
AUC of 82.2%, which are 1.2%, 2.3% and 0.3%, respectively, better than 3NOH
on the Hela dataset. We speculate that as h increases, the prediction effect will
deteriorate. The main reason for this phenomenon is that MNOH takes into ac-
count redundant information as h increases. Take the 4NOH as an example, a
sequence, with the length of n, is encoded into a (n — 3) x 256 matrix, but 99.6%
of the elements in the matrix are 0. This means the matrix will be too sparse
and the prediction performance will be poor. Therefore, the more the relation-
ship between nucleotides is considered, the prediction cannot be continuously
improved. Based on conclusions above, we decide to use 2NOH in our study.

3.3 Multi-scale convolution outperforms in prediction

In order to further explore the usefulness of multi-scale CNN layer, we compare
the performances between MCNN-LSTM and CNN-LSTM on 5 datasets. Here,
MCNN-LSTM denotes the CNN-LSTM, which contains multi-scale CNN layers.
Note that both of the methods are based on 2NOH. Moreover, CNN-LSTM use
only a fixed convolutional kernel size 24 to predict TFBS in DNA sequences,
while MCNN-LSTM uses different convolutional layers with kernel size (3, 5 and
9) to capture multiple sequence features. Fig. 3 demonstrates the performance
comparison between the proposed MCNN-LSTM and CNN-LSTM. Fig. 4 depicts
the ROC curves along with the AUCs, listed in Fig. 3.

As shown in these figures, it is straightforward to see that MCNN-LSTM out-
perform the CNN-LSTM. Compared with CNN-LSTM, MCNN-LSTM achieves
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the better values of Sen, Acc, MCC and AUC. For example, the four evaluation
metrics of MCNN-LSTM achieve 78.0%, 81.0%, 63.2% and 89.0% on average,
which are 7.7%, 0.6%, 5.1% and 3.0% higher than those of CNN-LSTM. In addi-
tion, it cannot escape our notice that the Spe value of MCNN-LSTM are lower
than that for CNN-LSTM on GM12878, Hep-G2 and H1-hESC datasets. Maybe
since that CNN-LSTM tends to predict positive samples as negatives.

According to the figures above, it is obvious that the multi-scale convolu-
tional layer is effective to predict TFBS in DNA sequences. This phenomenon
can be explained as follows. The binding lengths of the transcription factor are
different, hence the performance of the model with a fixed-size convolutional
kernel is lower than that of the model with a multiple size convolutional kernel.
Specifically, when the model scans DNA sequences with multi-scale convolution,
the features of TFBS tend to be more comprehensively captured.

3.4 Comparisons with existing predictors

In this section, we implement a new TFBS predictor, called DeepTF, by com-
bining the new encoding method MNOH with MCNN-LSTM. To demonstrate
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the effectiveness of DeepTF, we compare it with the existing sequence-based
predictors, including DeepBind [9] and CNN-Zeng [10]. Table 3 summarizes the
prediction performance of DeepTF, DeepBind and CNN-Zeng on five datasets
including A549, GM12878, Hela, Hep-G2 and H1-hESC dataset, selected in sec-
tion 3.1. Note that we separately train the models on the train dataset of each
dataset, and evaluate the performances on the corresponding test datasets.

As shown in Table 3, it is obviously that DeepTF achieves better perfor-
mance than DeepBind and CNN-Zeng with respect to all of the three evaluation
metrics, i.e., Acc, MCC and AUC. Compared to DeepBind, DeepTF gets 1.0%,
2.0%, and 1.1% increases on A549 dataset in terms of Acc, MCC and AUC, re-
spectively. Moreover, the Sen, Acc, MCC and AUC of DeepTF are, respectively,
2.1%, 0.1%, 0.4% and 0.3% higher than the values measured for CNN-Zeng on
GM12878 datasets. As another example, the average AUCs are also 1.1% and
0.9%, respectively, higher than the corresponding methods on five datasets.

Table 3. Results comparisons of DeepTF, DeepBind and CNN-Zeng.

Dataset Model  Sen(%) Spe(%) Acc(%) MCC AUC

DeepTF  78.0 84.5 81.4 0.626 0.893
A549  DeepBind 76.2 84.2 80.4 0.606 0.882
CNN-Zeng 74.9 86.4 81.0 0.615 0.874

DeepTF  82.9 84.3 83.6 0.672 0.916
GM12878 DeepBind 73.4 90.0 82.5 0.642 0.904
CNN-Zeng 80.8 86.0 83.5 0.668 0.913

DeepTF  74.8 82.7 78.8 0.574 0.853
Hela DeepBind  62.7 90.1 78.4 0.547 0.844
CNN-Zeng 63.0 89.1 77.8 0.538 0.839

DeepTF 69.3 77.6 79.5 0.675 0.879
Hep-G2 DeepBind 71.6 73.5 76.2 0.658 0.866
CNN-Zeng 66.4 69.7 77.8 0.671 0.877

DeepTF  82.2 7.7 81.6 0.614 0.910
H1-hESC DeepBind 79.3 69.4 81.6 0.591 0.897
CNN-Zeng 75.5 78.6 79.5 0.602 0.901

To further investigate the effectiveness of our predictor, we train the three
predictors on all 690 ChIP-seq datasets. Fig. 5 is the box plots of all AUCs of
DeepTF and two other predictors. The red dotted line represents the median
value of AUCs for all 690 datasets. Specifically, the median AUC of DeepTF is
0.880, which are 1.5% and 0.8% higher than DeepBind and CNN-Zeng, respec-
tively, which indicates that DeepTF is superior to other predictors in terms of
median AUC. Moreover, our predictor achieves the maximum value of the AUCs
similar to the other two predictors, but the number of the AUCs close to 0.6
is less than both DeepBind and CNN-Zeng, which means that the DeepTF we
proposed has good generalization ability and adaptability to different samples.

4 Conclusions

In this study, we propose a new sequence-based TFBS predictor, called DeepTF,
by combining a new encoding method, called MNOH, with a new deep-learning
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Fig. 5. The distribution of median AUCs on 690 ChIP-seq datasets.

model, called MCNN-LSTM. By comparison with several existing sequence-
based TFBS predictors, on the 690 ChIP-seq datasets, the efficacy of the pro-
posed predictor has been demonstrated. The superior performance of DeepTF
is mainly attributed to MNOH and MCNN-LSTM. Specifically, MNOH takes
account of the correlation between nucleotides in adjacent positions; MCNN-
LSTM uses multi-scale convolution layers for feature processing, and then uses
LSTM as a recurrent model that recognizes TFBS in DNA sequences.

Although DeepTF achieves some progress, there is still room to further im-
prove its performance due to the following two points. First, we only use three
multi-scale convolution layers in MCNN-LSTM model due to GPU memory lim-
itations. In our future work, we try to use more multi-scale convolution layers
for enhancing the performance of MCNN-LSTM. Second, DeepTF is specifically
designed to predict TFBS from DNA sequences. In the future, we will further
investigate the applicability of DeepTF to other types of binding site prediction
problems, such as RNA-binding sites [23], ATP-binding sites [24].
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