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Supporting Texts 
 

Text S1. The details of CNN-A and CNN-B.  

In this work, we design two types of CNN models, i.e., CNN-A and CNN-B, which use the same 

architecture but different training strategies. As illustrated in Figure S1, the architecture of designed 

CNN models consists of one input layer, five convolution layers, one fully connected layer, and one 

output layer.  

Input layer. The input layer is a 9×27 feature matrix, which is generated using the following 

three steps: (1) for each residue in a protein, we extract its corresponding PSSM feature vector (20-

D), PSS feature vector (3-D), PRSA feature vector (3-D) and AAFD-BN feature vector (1-D); (2) 

a 27-D feature vector for each residue is obtained by serially combining its PSSM, PSS, PRSA, and 

AAFD-BN feature vectors; (3) for a target residue, its corresponding 9×27 feature matrix is 

generated by using the sliding window technique with size of 9 centered at the residue. In other 

words, the 27-D feature vector of each residue in the sliding window is a row of the 9×27 

feature matrix. 

Convolution layers. There are five convolution layers. Each convolution layer (taking the i-th 

layer as an example) works as follows: (1) we use a filter with size of  to execute 

convolution operation; (2) we use batch normalization technology to normalize the output of 

convolution; (3) the normalized result is fed to ReLU activation function; (4) we select a window 

size of  to execute the max pooling operation on the result of last procedure; (5) the dropout 

technology with the rate of  is adopted to avoid over-fitting.  

Fully connected layer. The fully connected layer with  neurons is connected with the output 

of the last convolution layer. Noted that the dropout technology is adopted again after the fully 
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connected layer.  

Output layer. The output layer consists of two nodes and a softmax function is used to compute 

the final output. For each target residue, the output of the CNN is a 2-D vector, which consists of 

the predicted probabilities of a sample (residue) separately belonging to the positive class (DNA-

binding site) and the negative class (non-binding site). All the hyper-parameters of the CNN 

models are optimized by ten-fold cross-validation on benchmark datasets.   

  
Figure S1. The architecture of the designed CNN models 

Training strategies. The batch dataset used for training CNN in each iteration is randomly 

selected from the original training dataset, including a positive training dataset and a negative 

training dataset. Due to the severe imbalance of the original training dataset, the batch dataset 

is also an imbalanced dataset, which may do harm to the performance improvement of CNN. 

To further investigate the impact of data imbalance to the performance of CNN model, we use 

two training strategies, denoted as TS-A and TS-B. In TS-A, we randomly select samples from 
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the original training dataset to construct an imbalanced batch dataset used for training CNN, 

and the trained CNN model is represented as CNN-A. In TS-B, we separately randomly select 

same number of samples from the positive training dataset and the negative training dataset to 

form a balanced batch dataset, and the corresponding trained CNN model is called CNN-B. In 

this study, we optimize the hyper-parameters of the CNN models by ten-fold cross-validation. The 

hyper-parameters of two CNN models on four training datasets, i.e., PDNA-543, PDNA-335, 

PDNA-316, and PDNA-1151, are listed in Table S1.   

Table S1. The hyper-parameters of CNN-A and CNN-B on PDNA-543, PDNA-335, PDNA-316, 

and PDNA-1151 over ten-fold cross-validation.  

Dataset Model S1  N1 P1 S2 N2 P2 S3 N3 P3 S4 N4 P4 S5 N5 P5 Nf Pd 
PDNA-

543 
CNN-A 5 512 2 5 256 3 3 512 3 3 512 3 3 256 2 256 0.5 
CNN-B 7 256 2 5 512 4 7 512 2 7 256 4 3 128 2 256 0.5 

PDNA-
335 

CNN-A 5 128 4 5 512 2 5 512 2 3 256 2 3 64 2 256 0.5 
CNN-B 7 256 2 3 256 4 5 256 2 5 64 2 3 128 4 128 0.6 

PDNA-
316 

CNN-A 7 128 2 3 256 2 7 128 2 5 512 4 7 256 2 512 0.6 
CNN-B 5 512 2 5 128 4 3 512 4 3 128 4 3 64 4 256 0.5 

PDNA- 
1151 

CNN-A 5 256 4 3 256 2 7 32 4 3 64 2 5 32 4 256 0.6 
CNN-B 5 256 4 3 256 2 7 32 4 3 64 2 5 32 4 256 0.6 

 

Text S2. Analysis of the contributions of different types of features on the independent test 

datasets. 

Table S2 illustrates the performances comparisons of these four combination features, i.e., PSSM 

(P), PSSM+PSS (PP), PSSM+PSS+PRSA (PPP), and PSSM+PSS+PRSA+AAFD-BN (PPPA), on 

two independent test datasets, i.e., PDNA-41 and PDNA-52. From Table S2, the same phenomena 

with Table 4 in the manuscript can be found: (1) the PSSM feature is very useful to predict the 

protein-DNA binding sites; (2) PSS, PRSA, and AAFD-BN are also beneficial for predicting the 



protein-DNA binding sites. Taking PDNA-52 as an example, the MCC and AUC values of E-

HDSVM with the PSSM feature reach 0.371 and 0.858, respectively, which are not far below those 

of the E-HDSVM with the PPPA feature; moreover, the MCC value of E-HDSVM is improved from 

0.371 to 0.384, 0.393, and 0.405 after gradually adding PSS, PRSA, and AAFD-BN to the PSSM 

feature. In addition, it has not escaped our notice that the MCC value of E-HDSVM using the 

PPPA is slightly lower than that of the E-HDSVM using the PPP on PDNA-41. However, the 

model with the PPPA approximately still obtains 0.8% improvement of AUC value compared 

with the model with the PPP.  

 
Table S2. Performances comparisons of four combination features on two independent test datasets. 
 

Dataset Feature Sen (%) Spe (%) Acc (%) MCC AUC 

PDNA-41 a 

P 42.4 94.1 91.5 0.297 0.826 

PP 46.7 94.0 91.6 0.325 0.838 

PPP 43.1 95.6 93.0 0.345 0.847 

PPPA 44.0 95.2 92.7 0.340 0.851 

PDNA-52 b 

P 53.0 93.4 91.1 0.371 0.858 

PP 55.4 93.3 91.2 0.384 0.868 

PPP 52.4 94.4 92.0 0.393 0.872 

PPPA 51.8 94.9 92.5 0.405 0.876 

a The corresponding training dataset is PDNA-543. 



b The corresponding training dataset is PDNA-335. 

  


