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ABSTRACT: Accurate identification of protein−DNA binding sites is significant for both
understanding protein function and drug design. Machine-learning-based methods have been
extensively used for the prediction of protein−DNA binding sites. However, the data
imbalance problem, in which the number of nonbinding residues (negative-class samples) is
far larger than that of binding residues (positive-class samples), seriously restricts the
performance improvements of machine-learning-based predictors. In this work, we designed a
two-stage imbalanced learning algorithm, called ensembled hyperplane-distance-based
support vector machines (E-HDSVM), to improve the prediction performance of protein−
DNA binding sites. The first stage of E-HDSVM designs a new iterative sampling algorithm,
called hyperplane-distance-based under-sampling (HD-US), to extract multiple subsets from
the original imbalanced data set, each of which is used to train a support vector machine
(SVM). Unlike traditional sampling algorithms, HD-US selects samples by calculating the
distances between the samples and the separating hyperplane of the SVM. The second stage
of E-HDSVM proposes an enhanced AdaBoost (EAdaBoost) algorithm to ensemble multiple
trained SVMs. As an enhanced version of the original AdaBoost algorithm, EAdaBoost overcomes the overfitting problem.
Stringent cross-validation and independent tests on benchmark data sets demonstrated the superiority of E-HDSVM over
several popular imbalanced learning algorithms. Based on the proposed E-HDSVM algorithm, we further implemented a
sequence-based protein−DNA binding site predictor, called DNAPred, which is freely available at http://csbio.njust.edu.cn/
bioinf/dnapred/ for academic use. The computational experimental results showed that our predictor achieved an average
overall accuracy of 91.7% and a Mathew’s correlation coefficient of 0.395 on five benchmark data sets and outperformed several
state-of-the-art sequence-based protein−DNA binding site predictors.

■ INTRODUCTION

In living cells, protein−DNA interactions participate in many
essential biological processes, including DNA replication,
repair, and modifications.1−3 The accurate identification of
protein−DNA binding residues not only contributes to the
characterization of protein function but also has important
practical significance for drug design.4 Traditionally, research-
ers distinguish the DNA-binding sites through biochemical
methods, such as fast ChIP5 and X-ray crystallography.6

However, these methods are time consuming and laborious
and cannot keep pace with related research progress in the
postgenome era, when a large amount of unannotated
protein−DNA complexes are rapidly sequenced and deposited.
In view of this, many intelligent computational approaches,
such as template-based methods and machine-learning-based
methods, have been developed for the effective prediction of
protein−DNA binding residues during the past decades.
Template-based methods lead the trend in the field of

protein−DNA interaction prediction at the early stage.7−9

These methods identify the DNA-binding sites from a query
protein by using the sequence and/or structure information of
templates, which are selected by using the mature alignment or
comparison algorithms. For example, Morozov et al.10

identified DNA-binding affinities by applying two models:
one was based on a physical energy function and the other
based on the knowledge of the consensus sequence and the
number of interactions between DNA bases and amino acids.
Gao et al.11 developed DBD-Hunter, which combined
structural comparison with statistical potential between
residues and DNA base pairs, to identify the protein−DNA
interactions. There exist other elegant predictors, including
PreDs,12 DBD-Threader,13 DR_bind,14 and PreDNA.15

Template-based methods can achieve a satisfactory perform-
ance for predicting DNA-binding residues in the situation
where high-quality protein sequence and/or structure
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templates are available. Nevertheless, many proteins have no
available high-quality templates in the real world, which
seriously restricts the prediction performances of the template-
based methods.
In recent years, machine-learning-based methods have

attracted more and more attention.16−18 For example, Ofran
et al.19 presented DISIS-DNA, which incorporated sequence
features and machine-learning algorithms, including support
vector machine (SVM) and neural network (NN), to predict
DNA-binding sites in proteins. Hwang et al.20 implemented a
web server, DP-Bind, which utilized three machine-learning
models, i.e., kernel logistic regression (KLR), SVM, and
penalized logistic regression (PLR), to identify the protein−
DNA interactions. Wu et al.21 implemented a random forest
(RF)-based model with a novel hybrid feature, which was
composed of sequence evolutionary profiles, predicted
secondary structure, and orthogonal binary vector, for
distinguishing protein−DNA binding residues. Yan et al.22

designed a two-layered predictor (DRNApred), which utilized
a hidden Markov model (HMM) and logistic regression (LR),
for the identification of protein−DNA interactions.
Although great progress has been made by machine-

learning-based methods for the prediction of protein−DNA
interactions, challenges remain. An inevitable critical problem
is the data imbalance phenomenon, where the number of
negative-class samples (nonbinding sites) is significantly larger
than that of positive-class samples (binding sites). Numerous
reports23−25 have shown that the prediction models, which are
trained on imbalanced data through traditional machine-
learning algorithms (such as SVM, RF, NN, etc.), tend to be
biased to the negative classes (e.g., nonbinding residues being
assigned to the negative class). Taking SVM as an example,
which is one of the mostly used machine-learning algorithms in
this field, it usually shows robust performance on balanced data
sets but fails to obtain satisfactory results on imbalanced data
sets. The underlying reason can be explained as follows. SVM
is characterized by “support-vectors-dependency”; i.e., the
performance of the SVM is only determined by the separating
hyperplane between the positive and negative support vectors.
In the special scenario where the SVM is trained on
imbalanced data sets, the corresponding hyperplane may be
pushed toward the positive class; as a result, the SVM tends to
predict positive samples as negative ones.
Many imbalanced-learning methods26−28 have emerged in

recent years to enable effective learning from imbalanced data.
Among various methods, random under-sampling is a basic
technique and has been widely used for the prediction of
protein−ligand binding sites.29,30 However, random under-
sampling cannot always achieve excellent performance. The
underlying reason can be explained as follows. Random under-
sampling removes numerous negative samples from the
original imbalanced data set to form a balanced data set,
thereby easily leading to information loss of important samples.
To overcome the defects of random under-sampling, several
improved under-sampling methods have been proposed,31,32

such as cluster-based under-sampling33 and evolutionary
under-sampling.34 Recently, Tang el al.35,36 innovatively
proposed a granular SVMs-repetitive under-sampling
(GSVM-RU) algorithm, which iteratively combines the
under-sampling procedure and the prediction model training
procedure, to effectively deal with the class imbalance problem.
Intrinsically, GSVM-RU is based on the granule computing
theory37,38 and the “support-vectors-dependency” of SVM,

which is further described in the section “Procedures and
Potential Defects of GSVM-RU”. Previous studies35,36 have
found that GSVM-RU can elegantly deal with the data
imbalance problem and achieve better performance than
random under-sampling in most cases. However, we notice
there is still room for further enhancing the performance of
GSVM-RU by addressing its two potential defects, i.e., “ideal-
hyperplane missing” and “information loss or redundancy”
(refer to the section “Procedures and Potential Defects of
GSVM-RU” for details).
To overcome the defects of GSVM-RU, in this work, we

proposed an ensembled hyperplane-distance-based support
vector machines (E-HDSVM), which is an improved version of
GSVM-RU. There are two stages in E-HDSVM: hyperplane-
distance-based support vector machines (HDSVMs) gener-
ation and HDSVMs ensemble. In the first stage, a hyperplane-
distance-based under-sampling (HD-US) algorithm is utilized
to generate multiple training subsets, each of which is
subsequently used for training an individual SVM, called
HDSVM; in the ensemble stage, multiple trained HDSVMs are
ensembled as the final prediction model by applying an
enhanced AdaBoost (EAdaBoost) algorithm.
We demonstrated the efficacy of the proposed E-HDSVM

for imbalanced learning by stringently comparing it with the
random under-sampling and GSVM-RU. The computational
experimental results on five protein−DNA binding site data
sets have shown that our predictor outperforms several other
state-of-the-art sequence-based protein−DNA binding site
predictors. Based on the proposed E-HDSVM, we further
implemented a sequence-based protein−DNA binding site
predictor, called DNAPred, which is freely available at http://
csbio.njust.edu.cn/bioinf/dnapred/ for academic use.

■ MATERIALS AND METHODS
Benchmark Data Sets. In this study, five DNA−protein

binding site data sets, including PDNA-543, PDNA-41,
PDNA-335, PDNA-52, and PDNA-316, were used to evaluate
the proposed methods.
PDNA-543 and PDNA-41 were constructed in our previous

work (Hu et al.39). First, we collected 7186 DNA-binding
protein chains, which were annotated in the Protein Data Bank
(PDB)40 before October 10, 2015, to form an original data set.
After applying the CD-HIT software41 to remove the
redundant sequences, we obtained a nonredundant data set
in which no two sequences had more than 30% identity.
Finally, the nonredundant data set was divided into two
subsets: the training data set (PDNA-543) and the
independent test data set (PDNA-41). PDNA-543 included
543 protein sequences, which were released into the PDB
before October 10, 2014; PDNA-41 contained 41 protein
sequences, which were released into the PDB after October 10,
2014.
PDNA-335 and PDNA-52 were also employed in our

previous work (Yu et al.42). PDNA-335 consisted of 335
protein sequences, released into PDB before 10 March 2010,
from BioLip.43 The maximal pairwise sequence identity of
proteins in PDNA-335 was reduced to less than 40% with the
PISCES software.44 PDNA-52 was composed of 52 protein
sequences, released into PDB after 10 March 2010, from
BioLip. Again, the maximal pairwise sequence identity of
proteins in PDNA-52 was culled to 40% by using PISCES. In
addition, no sequences in PDNA-335 had more than 40%
pairwise identity to the sequences in PDNA-52.
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PDNA-316 was constructed by Si et al.17 and consisted of
316 DNA-binding protein chains. The details of PDNA-316
can be found in Si et al.17 The detailed statistical summary of
PDNA-543, PDNA-41, PDNA-335, PDNA-52, and PDNA-
316 is presented in Table 1.

Feature Representation. In this work, four features, i.e.,
position-specific scoring matrix (PSSM), predicted secondary
structure (PSS), predicted relative solvent accessibility
(PRSA), and amino acid frequency difference between binding
and nonbinding (AAFD-BN), are serially combined to form
the feature representation of each residue in a protein
sequence.
Position-Specific Scoring Matrix. The position-specific

scoring matrix (PSSM) encodes the evolutionary conservation
of protein sequences.45 For a protein sequence with L residues,
we used the PSI-BLAST software46 to search against the
SWISS-PROT database47 via three iterations with 0.001 as the
E-value cutoff to generate the corresponding original PSSM,
with L rows and 20 columns. Then, a standard logistic function
was utilized to normalize the original PSSM:

=
+ −

f x
x

( )
1

1 exp( ) (1)

where x is an element in the original PSSM.
Predicted Secondary Structure. For a protein sequence

with L residues, we used the PSIPRED software48 to extract its
predicted secondary structure (PSS) matrix with L rows and
three columns; the three values of the ith row in the matrix are
the respective probabilities that the ith residue belongs to three
secondary structure classes: coil (C), helix (H), and strand
(E).
Predicted Relative Solvent Accessibility. We extracted

predicted relative solvent accessibility (PRSA) of each residue
as follows. For a protein sequence with L residues, the SANN
program49 was applied to generate an L × 3 PRSA matrix; the
three values of the ith row in the PRSA matrix indicate the
respective probabilities that the ith residue belongs to three
solvent accessibility classes: buried (B), intermediate (I), and
exposed (E).
Amino Acid Frequency Difference between Binding and

Nonbinding. Previous researches50,51 have shown that differ-
ent ligands tend to interact with different types of residues.
Inspired by this, we considered that the frequencies of the
amino acids among binding or nonbinding residues may help
to improve the accuracy in ligand-binding site prediction, so
we designed a new sequence-based feature, called amino acid
frequency difference between binding and nonbinding (AAFD-
BN). Concretely, in a protein data set, the frequencies of the
20 native amino acids (numbered from 1 to 20) among DNA-

binding and nonbinding residues can be separately represented
as two different vectors with 20-dimensionality, denoted as F1
and F2. Then, a frequency difference vector, represented as F,
was obtained, where F = F1 − F2 = {f1, f 2, ···, f 20}, and f i was
the frequency difference of the ith type of amino acid between
DNA-binding and nonbinding residues. Hence, for a protein
sequence with L residues, an L × 1 AAFD-BN matrix was
extracted; the value of the ith row in matrix is f Ci

, where Ci ∈
{1,2,3,..., 20} is the amino acid type of the ith residue.
After obtaining the above four feature matrices, we adopted

the sliding window technique52 to represent the feature vector
of each residue. Our previous work39 has shown that the best
window size is 9. Thus, the dimensionalities of the PSSM, PSS,
PRSA, and AAFD-BN feature vectors of a residue are 180, 27,
27, and 9, respectively. The final feature of a residue is a 243-
dimensionality vector generated by serially combining the
above four vectors.

Procedures and Potential Defects of GSVM-RU.
Procedures of GSVM-RU. Intrinsically, GSVM-RU is an
iterative algorithm where each iteration has two stages, (A)
granule extraction and (B) granule fusion, for dealing with
class imbalanced learning problem. It should be noted that a
granule here refers to a subset of the original training data set.
Granule extraction aims to extract a granule by a support-
vectors-based under-sampling method (SV-US), while the
second stage focuses on integrating the extracted multiple
granules to form a fused data set. Taking the ith iteration as an
example, the details of the two stages of GSVM-RU are as
follows.

(A) Granule Extraction. A negative granule, denoted as NGi,
is extracted by the SV-US as follows. First, an original SVM,
denoted as ORSVMi, is learned on the training data set (TDi);
then all negative support vectors (SVs) of ORSVMi are
extracted as NGi. Finally, the NGi is removed from TDi, and
the remaining set, denoted as TDi+1, is used as the training data
set in the next iteration; i.e., TDi+1 ← TDi − NGi. Note that
TDi is the original training data set (OTD) in the first iteration;
i.e., TD1 ← OTD.

(B) Granule Fusion. Let PG be the positive granule which
consists of all positive samples in OTD. After NGi is extracted,
it and PG are appropriately integrated to generate a fused data
set, denoted as FDi, at the ith iteration by using one of the two
data-level fusion strategies (i.e., “Discard” and “Combine”).
More specifically, the “Discard” strategy generates FDi by
combining the positive granule (PG) with NGi (i.e., FDi ← PG
∪ NGi), while the “Combine” strategy generates FDi by
combining PG with all extracted NGs (i.e., FDi← PG ∪ NG1∪
NG2∪ ... ∪NGi). Finally, a granular SVM, called GSVMi, is
trained on the obtained FDi.
This iteration will be terminated when the performance of

GSVMi+1 is inferior to that of GSVMi. GSVMi is then selected
as the final prediction model. Accordingly, GSVM-RU has two
versions according to the data-level fusion strategies used: One
is a “Discard”-based version, denoted as GSVM-RD; the other
is a “Combine”-based version, denoted as GSVM-RC.

Potential Defects of GSVM-RU. Although GSVM-RU has
been demonstrated to be useful for imbalanced learning,35,36 it
does have two potential defects deserved to be further
investigated. First, SV-US may potentially cause the so-called
ideal-hyperplane-missing (IHM) phenomenon, which is
adverse to the subsequent granule fusion. Concretely, in the
first several iterations, the sample number of removed NGs is

Table 1. Statistical Summary of PDNA-543, PDNA-41,
PDNA-335, PDNA-52, and PDNA-316

Data Set No. of Sequences Num_Pa Num_Nb Ratioc

PDNA-543 543 9549 134,995 14
PDNA-41 41 734 14,021 19
PDNA-335 335 6461 71,320 11
PDNA-52 52 973 16,225 17
PDNA-316 316 5609 67,109 12

aNum_P is the number of positive samples. bNum_N is the number
of negative samples. cRatio = Num_N/Num_P, which measures the
imbalance degree of the data set.
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too large (refer to the section “Performance Comparisons
between HD-US and SV-US”), which easily leads to the
emergence of IHM, resulting in the performance deterioration
of the corresponding original SVMs (ORSVMs). A detailed
description of the IHM phenomenon and its negative effect is
further discussed in the section “Performance Comparisons
between HD-US and SV-US”. Due to the inferior perform-
ances of ORSVMs, the GSVMs also show deteriorated
performances in the “Discard”-based granule fusion stage
(Note that when the “Discard” method is adopted, ORSVM
and GSVM have nearly the same performances in each
iteration due to the “support-vectors-dependency” of SVM).
Second, the data-level fusion methods may cause informa-

tion loss or redundancy. Concretely, for “Discard”-based
granule fusion, in the ith iteration, GSVM-RU only considers
NGi and discards the important information buried in other
NGs (i.e., NG1, NG2,···, NGi−1), which easily leads to
information loss. In the “Combine”-based granule fusion, all
NGs, which may contain noise and overlapping information,
are blindly incorporated. As a result, information redundancy is
inevitable.
Ensembled Hyperplane-Distance-Based Support Vec-

tor Machines. To overcome the defects of GSVM-RU, we
propose an enhanced version of GSVM-RU, denoted as E-
HDSVM. Compared with GSVM-RU, E-HDSVM has two
advantages: First, a novel hyperplane-distance-based under-
sampling (HD-US) method, rather than SV-US, is designed to
eliminate the IHM phenomenon; moreover, to relieve the
negative impact of information loss and/or redundancy, a
decision-level fusion strategy is adopted to replace the original
data-level fusion strategies. More specifically, we try to fuse
multiple SVMs trained on multiple granules rather than
directly fusing those multiple granules. In this section, we
describe the architecture of E-HDSVM, which includes
HDSVMs generation and a HDSVMs ensemble procedure.
HDSVMs Generation. In the first stage, multiple subsets are

orderly generated from the original training data set (OTD) by
the proposed HD-US, and the corresponding SVM, called
HDSVM, is constructed on each subset. HD-US is an iterative
under-sampling algorithm that can generate a new subset in
each iteration. Taking the ith iteration as an example, the
process of HD-US is performed as follows. A SVM, denoted as
HDSVMi, is first constructed on the training data set Si. Then a
few negative samples, which have the shortest distances to the
hyperplane of trained HDSVMi, are removed from the Si, and
the remaining samples form a new subset of OTD, which is
denoted as Si+1 and used as the training data set in the (i+1)
iteration. It should be noted that Si is OTD in the first
iteration; i.e., S1 ← OTD.
To implement the first stage, the following two problems

should be further investigated: (1) How many times do we
need to repeat the iterations? (2) How many negative samples
should be removed in each iteration?
The above-mentioned problems could be solved as follows.

First, in this work, we only consider a special situation where
the numbers of removed negative samples in each iteration are
equal. To facilitate the description, the number of iterations
and the number of removed negative samples in each iteration
are represented as I and K, respectively. Obviously, the number
of generated HDSVMs is also equal to I. Increasing the
number of HDSVMs may help to improve the performance of
ensembled HDSVM. Thus, to obtain as many HDSVMs as
possible, we execute the iteration procedure until the newly

generated subset does not contain negative samples. Under the
above conditions, I is inversely proportional to K:

=I M K/N (2)

where MN is the total number of negative samples in OTD. At
the extreme, if we only remove one negative sample in each
iteration (K = 1), we will obtain MN HDSVMs. Unfortunately,
due to the tremendous time consumption, this strategy is
impractical. Thus, selecting the value of K is a tradeoff between
the time consumption and the performance improvement.
Moreover, for the data sets with different scales, it is difficult to
preset a fixed K value but easy to choose a constant I.
Therefore, unless otherwise stated, we set I = 10 in all
experiments of E-HDSVM (the reason is carefully explained in
the section “Choosing the value of I in E-HDSVM”). The
procedures of the first stage (i.e., HDSVMs generation) in E-
HDSVM are described in Algorithm 1 as follows.

Algorithm 1. HDSVMs Generation:
Input: OTD − original training data set; I − number of

iterations
Output: HDSVMSet − set of trained HDSVMs
Initialization: i← 1; Si ← OTD; HDSVMSet← ϕ; K = MN/I
Step 1. Train a SVM, called HDSVMi, on Si, and add it to

HDSVMSet:

←HDSVM Train S( )i i (3)

← ∪ { }HDSVMSet HDSVMSet HDSVMi (4)

Step 2. Let DSi be an empty set, where DSi is the distance set
in the ith iteration. Let Hi be the separating hyperplane of
HDSVMi. For each negative sample xj in Si, calculate its
distance to Hi, denoted as di,j, and then add di,j to DSi:

← _d Distance H xCaculate ( , )i j i j, (5)

← ∪ { }DS DS di i i j, (6)

Step 3. Based on the distance set DSi, the K negative
samples, which have the shortest distances to Hi, are removed
from Si, and the remaining samples form a new subset Si+1,
which is used as the training data set in the next iteration:

←+S S DS KRemove( , , )i i i1 (7)

Step 4. i ← i + 1; if i > I, Return HDSVMSet = {HDSVM1,
HDSVM2, ···, HDSVMI}; otherwise, go to Step 1.

HDSVMs Ensemble. In the second stage, all elements in
HDSVMSet are ensembled to obtain the final prediction model
by an enhanced AdaBoost (EAdaBoost) algorithm. As an
enhanced version of the original AdaBoost,53 the proposed
EAdaBoost overcomes the overfitting problem. Before
introducing EAdaBoost, we review the details of the original
AdaBoost as follows. The original AdaBoost first calculates the
weight of each base classifier and then combines all base
classifiers with their weights to generate an ensembled
classifier. However, the original AdaBoost easily leads to the
overfitting problem, especially when dealing with prediction
tasks related to protein residues.42 Specifically, in the original
AdaBoost, samples in the entire training data set are used as
evaluation samples to calculate the weights of base classifiers.
In other words, the evaluation samples and the training
samples originate from the same data set. As a result, the
ensembled classifier has an excellent performance on the
training data set and then would be with poor generalization
performances on other test data sets.
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In light of this, we modify the original AdaBoost as follows.
An independent evaluation data set (IED), which does not
share samples with the training data set, is used to perform the
boosting procedure, and we rename the modified AdaBoost as
enhanced AdaBoost (EAdaBoost). In addition, we construct
IED in this work as follows. Given a training data set (TRD)
for E-HDSVM, we randomly select 20% of samples from TRD
to form IED, and the rest of the samples are used as a training
data set (i.e., OTD) in the HDSVMs generation stage. Based
on EAdaBoost, we perform HDSVMs ensemble procedures as
described in Algorithm 2.
Algorithm 2. HDSVMs Ensemble:
Input: HDSVMSet − set of HDSVMs (HDSVMSet) that are

trained with Algorithm 1. = { } =IED y(x , )j
eval

j
eval

j
M

1− independ-

ent evaluation data set, where xj
eval and yj

eval are, respectively, the
feature vector and the label of the jth evaluation sample; yj

eval ∈
{+1, − 1}, where + 1 and −1 represent the positive and
negative classes, respectively; M is the number of evaluation
samples.
Output: AdaHDSVM(x) − ensembled HDSVMs
Initialization: i ← 1; wj

i = 1/M, j = 1, 2, ...,M, where wj
i is the

weight of the jth evaluation sample in the ith iteration

Step 1. Calculate the error of HDSVMi, called εi, using eq 8
as follows:

∑ε = × × −
=

w F y sign HDSVM x T( ( ( ) ))i
j

M

j
i

j
eval

i j
eval

pre
1 (8)

where HDSVMi(xj
eval) is the predicted probability of belonging

to the positive class for xj
eval by HDSVMi; Tpre is a prescribed

threshold; sign(t) is a sign function that equals 1 when t > 0
and −1 otherwise; F(t) is a scalar function that equals 1 when t
< 0 and 0 otherwise.
Step 2. Compute the weight of HDSVMi, denoted as βi,

based on εi:

β

ε ε

ε
ε

=
> =

−

0, 0.5 or 0

1
2

log
1

, otherwisei

i i

i

i

l
m
ooooo

n
ooooo (9)

Step 3. Update the weight of each evaluation sample by eq
10:

β

β β
=

=

× − × − × ≠
=+w

M

w y sign HDSVM x T Z
j M

1/ , 0

exp( ( ( ) ) )/ , 0
, 1, 2, ...,j

i
i

j
i

j
eval

i j
eval

pre i i

1
l
m
oooo
n
oooo (10)

w h e r e Z i s a n o r m a l i z a t i o n f a c t o r a n d

β

= ∑ × − × −

×

=Z w y sign HDSVM x Texp( ( ( ) )

)

j
M

j
i

j
eval

i j
eval

pre

i

1

Step 4. i ← i + 1; if i ≤ I, go to Step 1; otherwise, return the
e n s e m b l e d c l a s s i fi e r a s f o l l o w s : R e t u r n

β= ∑ ×=AdaHDSVM x HDSVM x( ) ( )i
I

i i1 .
In this study, we use scikit-learn software,54 which can be

freely downloaded at http://scikit-learn.org/, to train the SVM
and calculate the distance between the sample and the
separating hyperplane of the SVM. Two parameters of the
SVM, including penalty parameter C and RBF kernel width
parameter γ, are optimized by performing a grid search strategy
over 10-fold cross-validation.
Evaluation Indices. To evaluate the performances of the

proposed methods, four evaluation indices,55−64 i.e., Sensitivity
(Sen), Specificity (Spe), Accuracy (Acc), and Mathew’s
correlation coefficient (MCC), are utilized as follows:

= +Sen TP TP FN/( ) (11)

= +Spe TN TN FP/( ) (12)

= + + + +Acc TP TN TP FP TN FN( )/( ) (13)

= × − ×

+ × + × + × +

MCC TP TN FP FN

TP FP TN FN TP FN TN FP

( )

/ ( ) ( ) ( ) ( )
(14)

where TP, TN, FP, and FN represent true positives, true
negatives, false positives, and false negatives, respectively.
Because the above four indices are threshold dependent, it is

critical to select an appropriate threshold for fair comparisons
between various predictors. In this work, we select the
threshold T that maximizes the value of MCC over 10-fold
cross-validation. Moreover, the area under the receiver
operating characteristic curve (AUC),59−63,65 which is thresh-
old independent and reflects the overall prediction perform-

Table 2. AUC Performances of HDSVMi and ORSVMi with Respect to Different Values of i on PDNA-543, PDNA-335, and
PDNA-316 over 10-Fold Cross-Validation

i 1 2 3 4 5 6 7 8 9 10 11 12 Avgg

HPDNA-543a 0.816 0.829 0.842 0.849 0.850 0.847 0.830 0.803 0.761 0.701 − − 0.813
OPDNA-543b 0.816 0.844 0.846 0.840 0.824 0.803 0.780 0.752 0.726 0.698 0.669 0.646 0.770
HPDNA-335c 0.826 0.838 0.847 0.851 0.850 0.847 0.840 0.811 0.765 0.709 − − 0.818
OPDNA-335d 0.826 0.848 0.846 0.834 0.810 0.777 0.745 0.714 0.688 − − − 0.788
HPDNA-316e 0.847 0.859 0.869 0.872 0.871 0.867 0.855 0.826 0.780 0.725 − − 0.837
OPDNA-316f 0.847 0.871 0.869 0.857 0.839 0.811 0.780 0.756 0.731 − − − 0.818

aHPDNA-543 is the AUC value of HDSVMi on PDNA-543.
bOPDNA-543 is the AUC value of ORSVMi on PDNA-543. cHPDNA-335 is the AUC

value of HDSVMi on PDNA-335. dOPDNA-335 is the AUC value of ORSVMi on PDNA-335. eHPDNA-316 is the AUC value of HDSVMi on
PDNA-316. fOPDNA-316 is the AUC value of ORSVMi on PDNA-316.

gAvg is the averaged AUC value of all HDSVMs/ORSVMs on a given data
set; ‘−’ indicates that the corresponding value does not exist.
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ance of a predictor, is utilized as another important evaluation
index.

■ RESULTS AND DISCUSSIONS
Performance Comparisons between HD-US and SV-

US. In this section, the performances of HD-US and SV-US
are evaluated as follows. For HD-US, we evaluate the AUC
performance of each of the 10 HDSVMs (I = 10). For SV-US,
we repeatedly perform it and evaluate the corresponding AUC
performance of each ORSVM until the new training data set
becomes a balanced data set. Table 2 illustrates the AUC values
of HDSVMi and ORSVMi versus the values of i on three
protein−DNA data sets over 10-fold cross-validation, while
Figure 1 plots the AUC variation curves of HDSVMi and
ORSVMi versus the value of i for each data set.
From Table 2 and Figure 1, we observe an interesting

phenomenon: the performances of HDSVMi and ORSVMi first
improve and then decrease with the increase in the value of i
on all three protein−DNA data sets. Taking PDNA-543 as an
example, this phenomenon can be explained as follows.
Initially, (i.e., i = 1), HDSVMi and ORSVMi are both trained
on the original imbalanced data set. The separating hyper-
planes of HDSVMi and ORSVMi, denoted as Hi and OHi,
respectively, are pushed toward the positive samples, which
leads to the poor performances. After removing a few negative
samples that have the shortest distances to Hi, Hi moves away
from positives and closer to negatives. Similarly, OHi moves
from positives to negatives if the NGs (i.e., negative support
vectors) are removed. As a result, the performances of

HDSVMi and ORSVMi both gradually improve (i.e., 1 < i <
5 for HDSVMi and 1 < i < 3 for ORSVMi). When Hi and OHi
arrive at or close to an ideal position, HDSVMi and ORSVMi
separately achieve the optimal performances (i.e., i = 5 for
HDSVMi and i = 3 for ORSVMi). Nevertheless, by
continuously removing negatives, Hi and OHi both move
more and more closer to negatives, and the predictions of
HDSVMi and ORSVMi are skewed to positive class. Hence, the
corresponding performances will be deteriorated (i.e., 5 < i ≤
10 for HDSVMi and 3 < i ≤ 12 for ORSVMi). Figure 2
intuitively shows the relative position variations of the
separating hyperplanes for HDSVMs with HD-US and
ORSVMs with SV-US on PDNA-543.
It has not escaped our notice that the overall performances

of HDSVMs are better than those of ORSVMs for each data
set, which indicates HD-US outperforms SV-US. Specifically,
the averaged AUC values of all HDSVMs are approximately
5.6%, 3.8%, and 2.3% higher than the corresponding values of
ORSVMs on PDNA-543, PDNA-335, and PDNA-316,
respectively. In addition, we notice that HD-US can generate
more SVMs with higher performances than SV-US, which
means that HD-US is more suitable for the subsequent SVMs
ensemble. For example, on PDNA-335, HD-US produces four
HDSVMs whose AUC values exceed 0.845, which is the
baseline AUC value of the SVM trained on a balanced data set
by random under-sampling as shown in the section “Perform-
ance Comparisons between E-HDSVM, GSVM-RU, and SVM-
RU” (i.e., HDSVM3, HDSVM4, HDSVM5, and HDSVM6),
while SV-US only produces two corresponding high-quality

Figure 1. Variation curves of AUC values of HDSVMi and ORSVMi with respect to the values of i on three protein−DNA data sets.

Figure 2. Relative position variations of the separating hyperplanes for HDSVMs and ORSVMs: (A) HDSVMs with HD-US on PDNA-543. (B)
ORSVMs with SV-US on PDNA-543.
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ORSVMs (i.e., ORSVM2 and ORSVM3) with AUC values
greater than 0.845.
The reason that SV-US shows an inferior performance can

be explained as follows. In SV-US, the separating hyperplane of
ORSVM is gradually moved from positive samples to negatives
and close to an ideal position by continuously removing NGs.
However, if the sample number in the removed NG is too large
in each iteration, the hyperplane will move with large span and
easily miss the ideal position (in this work, we called this
phenomenon ideal-hyperplane-missing, i.e., IHM). As a result,
the corresponding ORSVM will achieve a suboptimal perform-
ance. To further investigate the above reason, in SV-US, we
calculate the percentage, called Pei, between the sample
number of NGi and that of the original training data set in
the ith iteration. Table 3 shows the value of Pei versus the value
of i for each protein−DNA binding site data set.
Based on the experimental results listed in Table 3, we can

explain the inferior performance of SV-US as follows. For each
data set, more than 26% of samples are removed in the first
iteration, and nearly a half of samples are removed in the first
three iterations, which means that the hyperplane of ORSVM
moves from positive samples to negatives with large spans,
easily leading to an IHM. As a result, in the first three
iterations, the performance of ORSVM can be improved but
cannot achieve the optimal performance; after the third
iteration, since the hyperplane misses the ideal position and
moves toward negatives, the performance of ORSVM rapidly
deteriorates. Different from SV-US, HD-US only removes 10%
of negative samples in each iteration, which indicates that
hyperplane of HDSVM is moved with a smaller span.
Therefore, the hyperplane of HDSVM more easily arrives at

or close to the ideal hyperplane position than ORSVM, which
can explain why the overall performances of HDSVMs are
superior to those of ORSVMs.

Decision-Level Fusion Helps to Improve the Perform-
ance of a Single Classifier. To demonstrate that the
proposed decision-level fusion scheme (multiple HDSVMs are
ensembled by EAdaBoost, denoted as E-HDSVM) is useful, we
compare the performances between E-HDSVM and HDSVM-
BE. Here, HDSVM-BE denotes the HDSVM that has the
highest AUC value among all HDSVMs. For example,
HDSVM-BE is HDSVM5, HDSVM4, and HDSVM4 on
PDNA-543, PDNA-335, and PDNA-316, respectively (refer
to Table 2). Figure 3 shows the performance comparisons of
the above two models on PDNA-543, PDNA-335, and PDNA-
316 over 10-fold cross-validation.
From Figure 3, it is easy to see that E-HDSVM consistently

outperforms HDSVM-BE on all three considered data sets.
Concretely, the Spe, Acc, MCC, and AUC values of E-HDSVM
increase by approximately 1.9%, 1.5%, 4.8%, and 1.2% on
average over the respective values evaluated for HDSVM-BE
on the three data sets. As for Sen, although the values of
HDSVM-BE on PDNA-543 and PDNA-316 are higher than
those of E-HDSVM, the corresponding values of Spe of
HDSVM-BE are relatively lower. The underlying reason is that
too many negative samples are predicted as positives by
HDSVM-BE. Together with the fact that the number of
negatives is far larger than that of positives, this makes the
MCC performance of HDSVM-BE inferior to that of E-
HDSVM. Based on the experimental results in Figure 3, we can
conclude that our decision-level fusion strategy helps to

Table 3. Values of Pei of ORSVMi on Three Protein−DNA Binding Site Data Sets over 10-Fold Cross-Validation

i 1 2 3 4 5 6 7 8 9 10 11 12

Pei on PDNA-543 26.1% 15.2% 10.5% 8.1% 6.5% 5.4% 4.6% 3.8% 3.2% 2.6% 2.1% 1.6%
Pei on PDNA-335 29.2% 16.4% 11.4% 8.6% 6.7% 5.4% 4.2% 3.2% 2.3% −a − −
Pei on PDNA-316 26.1% 15.7% 11.1% 8.7% 7.1% 5.8% 4.6% 3.6% 2.8% − − −

a‘−’ indicates that the corresponding value does not exist.

Figure 3. Performance comparisons between E-HDSVM and HDSVM-BE on three protein−DNA data sets over 10-fold cross-validation.
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enhance the prediction performance of a single classifier, even
on the imbalanced data set.
Choosing the Value of I in E-HDSVM. In this section, we

explain the reason why I = 10 is a better choice for E-HDSVM.
We observe the performance variations of the E-HDSVM
through gradually increasing the value of I from 2 to 12 with a
step size of 1. For each value of I, we measure the AUC values
of E-HDSVM on PDNA-543, PDNA-335, and PDNA-316
over 10-fold cross-validation. Figure 4 plots the variation
curves of AUC performance versus the value of I on three
individual data sets.
From Figure 4, the following phenomena can be observed.

On PDNA-335 and PDNA-316, the overall trend of the AUC
value continuously improves with increasing I when I ≤ 8, and
it keeps constant after I > 8. On PDNA-543, the value of AUC
gradually increases with increasing I when I ≤ 10 and keeps
stable after I > 10. Therefore, the better values of I are 8 and 10
on PDNA-335 (PDNA-316) and PDNA-543, respectively,
from the view of the single data set. However, considering the
generality of the proposed E-HDSVM on different data sets,
we choose the larger value (I = 10) for all the experiments in
this work.
Analysis of the Contributions of Different Types of

Features. In this section, the contributions of different types
of features were carefully analyzed. Specifically, we separately
used four serially combined features, i.e., PSSM (P), PSSM
+PSS (PP), PSSM+PSS+PRSA (PPP), and PSSM+PSS+PRSA
+AAFD-BN (PPPA), as the inputs of E-HDSVM models and
then evaluated the prediction performances of the correspond-
ing models. Table 4 summarizes the prediction performances
of the four combined features on PDNA-543, PDNA-335, and
PDNA-316 over 10-fold cross-validation. In addition, we
further compared the performances of these four combined
features on the two independent test data sets, i.e., PDNA-41
and PDNA-52, as presented in Table S2 in the Supporting
Information.
From Table 4, the following two observations can be made:
(1) The PSSM feature is very useful for the prediction of

protein−DNA binding sites. On all the three considered data
sets, E-HDSVM with a single PSSM feature achieved a
relatively satisfactory performance regarding MCC and AUC.
For example, the MCC values of E-HDSVM with the PSSM
feature are 0.337, 0.355, and 0.418 on PDNA-543, PDNA-335,
and PDNA-316, respectively, while the AUC values are 0.836,
0.833, and 0.860, respectively, on the three data sets. Both the
MCC and AUC values are not far below those of the best
performer, i.e. E-HDSVM with the PPPA feature, which
demonstrates the efficacy of the PSSM feature for protein−
DNA binding site prediction.

(2) PSS, PRSA, and AAFD-BN are also beneficial for the
prediction of protein−DNA binding sites. As illustrated in
Table 4, the performance of E-HDSVM is consistently
improved by gradually adding PSS, PRSA, and AAFD-BN to
the PSSM feature for all three considered data sets. Taking the
results on PDNA-543 as an example, the AUC value was
improved from 0.836 to 0.845, 0.856, and 0.861 after gradually
adding PSS, PRSA, and AAFD-BN, respectively, to the PSSM
feature. Similarly, the MCC value was also improved from
0.337 to 0.351, 0.373, and 0.375. On average, the E-HDSVM
model with the PPPA feature improved by approximately
11.0% and 3.0% for MCC and AUC, respectively, compared
with the E-HDSVM model with only the PSSM feature on the
three considered data sets.

Performance Comparisons between E-HDSVM,
GSVM-RU, and SVM-RU. To further examine the efficacy
of the proposed E-HDSVM, we compare it with GSVM-RU,
including GSVM-RC and GSVM-RD, and a baseline model
SVM-RU that trains the SVM on a balanced data set by using
the random under-sampling technique. Table 5 summarizes
the performances of E-HDSVM, GSVM-RD, GSVM-RC, and
SVM-RU on PDNA-543, PDNA-335, and PDNA-316 over 10-
fold cross-validation.
It is straightforward to find from Table 5 that the

performance of E-HDSVM is obviously better than the other
three considered methods. Compared with GSVM-RD and
GSVM-RC, E-HDSVM achieves the best values of MCC and
AUC on all three protein−DNA data sets. For example, the
MCC and AUC of E-HDSVM are 9.3% and 1.5%, respectively,

Figure 4. Variation curves of AUC values in the range of I ∈ [2,12] on PDNA-543, PDNA-335, and PDNA-316 over 10-fold cross-validation.

Table 4. Prediction Performances of the Four Combination
Features on the Three Protein−DNA Binding Site Data Sets
over 10-Fold Cross-Validation

Data Set Feature Sen (%) Spe (%) Acc (%) MCC AUC

PDNA-543 P 43.9 94.0 90.7 0.337 0.836
PP 45.9 93.9 90.8 0.351 0.845
PPP 43.1 95.4 92.0 0.373 0.856
PPPA 44.2 95.2 91.9 0.375 0.861

PDNA-335 P 51.9 90.8 87.6 0.355 0.833
PP 51.3 92.0 88.7 0.374 0.844
PPP 50.4 93.3 89.7 0.396 0.858
PPPA 53.2 92.5 89.3 0.400 0.860

PDNA-316 P 38.4 97.3 92.7 0.418 0.860
PP 41.3 97.0 92.7 0.432 0.868
PPP 48.0 96.0 92.3 0.448 0.878
PPPA 49.9 95.7 92.2 0.455 0.883
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higher than those of GSVM-RD on PDNA-543. As another
example, the enhancements of MCC and AUC on PDNA-316
reach 1.6% and 4.0%, respectively, in the comparisons with
GSVM-RC. Although GSVM-RC has higher values of Spe and
Acc than E-HDSVM on each data set, its corresponding Sen is
significantly lower. The lower Sen indicates that GSVM-RC
tends to predict positive samples as negatives, which is
opposite to the purpose of learning from the imbalanced data
set. Compared to SVM-RU, the performance of E-HDSVM
shows an absolute advantage. Specifically, E-HDSVM sepa-
rately shares approximately 2.8%, 2.5%, 10.6%, and 2.0%
improvements of Spe, Acc, MCC, and AUC on average on the
three data sets. In addition, on PDNA-335, all five evaluation
indices of E-HDSVM are higher than the corresponding values
measured for SVM-RU.
To further evaluate the generalization performance of E-

HDSVM, we compare it with GSVM-RD, GSVM-RC, and
SVM-RU on the independent test data sets. Specifically, for
each type of the above four methods, we use it to train a model
on the training data set with the parameters selected in cross-
validation and test the trained model on the corresponding
independent test data set. In this study, we use PDNA-543 and
PDNA-335 as the training data sets, and the corresponding
independent test data sets are PDNA-41 and PDNA-52,
respectively. Table 6 shows the performances of E-HDSVM
and other three methods on the two independent test data sets
in detail.

From Table 6, we can conclude that the generalization
capability of E-HDSVM outperforms that of the other three
considered methods. In terms of AUC, E-HDSVM achieves the
highest values among the four methods for both PDNA-41 and
PDNA-52 data sets. The values of AUC for E-HDSVM are
increased 1.4% and 0.9% over those of the second best method
on PDNA-41 and PDNA-52, respectively. Moreover, the
improvements of AUC between the worst method and E-
HDSVM reach 5.7% and 2.6% for PDNA-41 and PDNA-52,
respectively. From the view of MCC, the performance of E-
HDSVM is also satisfactory. Compared with GSVM-RD and
SVM-RU, E-HDSVM achieves 11.8% and 18.4% average
improvements on the two validation data sets, although it has a
slightly lower MCC value than GSVM-RC on PDNA-52.

Performance Comparisons between E-HDSVM and
the CNN Model. Recently, deep learning models, such as
convolutional neural network (CNN)66 and long short-term
memory (LSTM),67 have been widely used in bioinformatics
studies. In view of this, we further compared the proposed E-
HDSVM model with one of the typical deep learning models,
i.e., CNN, in this section. On the one hand, CNN is one of the
most commonly used deep learning models in bioinformatics
studies; on the other hand, to the best of our knowledge, there
is no available deep-learning-based web server for protein−
DNA binding sites prediction that can be directly used for
comparison. In view of this, we deigned two types of CNN
models, denoted as CNN-A and CNN-B, which are trained by
two different training strategies, i.e., TS-A and TS-B,
respectively, for protein−DNA binding sites prediction. The
details of two CNN models are illustrated in Text S1 in the
Supporting Information. The performance comparisons
between the proposed E-HDSVM, CNN-A, and CNN-B on
PDNA-543, PDNA-335, PDNA-316, PDNA-41, and PDNA-
52 are summarized in Table 7.
As shown in Table 7, E-HDSVM achieves a better

performance than CNN-A and CNN-B with respect to the
values of MCC and AUC, which demonstrates the strong
performance of E-HDSVM again. For example, compared with
CNN-A, E-HDSVM obtains an average of 13.3% MCC
improvement on the five data sets, while the AUC value of
E-HDSVM is about an average of 1.3% higher than that of
CNN-B at the same time. On the other hand, we can observe
that the performance of CNN-B is better than that of CNN-A,
which indicates that the proposed training strategy TS-B can
partially relieve the negative effect caused by class imbalance
(see details in Text S1). Compared with CNN-A, CNN-B
achieves an average of 6.2% improvement of MCC on the five
considered data sets. Although the AUC values of CNN-B are
slightly lower than that of CNN-A on PDNA-316 and PDNA-
335, CNN-B still achieves approximately 0.6%, 0.6%, and 1.3%
enhancements on PDNA-543, PDNA-41, and PDNA-52,
respectively.
Considering that the deep learning model (e.g., CNN used

in this study) prefers more training data, we further
constructed a large-scale training data set, called PDNA-
1151, as follows. First, we combined PDNA-543, PDNA-335,
and PDNA-316 to form a data set PDNA-1194 consisting of
1194 sequences. Then, the CD-HIT-2D software41 was used to
remove the sequences in PDNA-1194 that had more than 40%
sequence identity with any sequences in PDNA-41 or PDNA-
52. Finally, the remaining 1151 sequences constituted the new
data set PDNA-1151, among which there were 20,936 binding
sites and 263,977 nonbinding sites. In this study, we separately

Table 5. Performance Comparisons between E-HDSVM,
GSVM-RD, GSVM-RC, and SVM-RU on Three Protein−
DNA Binding Site Data Sets over 10-Fold Cross-Validation

Data Set Method
Sen
(%)

Spe
(%)

Acc
(%) MCC AUC

PDNA-543 E-HDSVM 44.2 95.2 91.9 0.375 0.861
GSVM-RD 53.1 91.3 88.8 0.343 0.848
GSVM-RC 36.2 96.8 92.8 0.363 0.820
SVM-RU 54.9 90.2 87.9 0.335 0.844

PDNA-335 E-HDSVM 53.2 92.5 89.3 0.400 0.860
GSVM-RD 55.6 90.9 87.9 0.381 0.851
GSVM-RC 41.5 95.6 91.1 0.391 0.830
SVM-RU 51.8 91.6 88.3 0.369 0.845

PDNA-316 E-HDSVM 49.9 95.7 92.2 0.455 0.883
GSVM-RD 53.7 94.2 91.1 0.436 0.876
GSVM-RC 43.9 96.9 92.8 0.448 0.849
SVM-RU 50.7 94.0 90.7 0.408 0.863

Table 6. Performance Comparisons between E-HDSVM,
GSVM-RD, GSVM-RC, and SVM-RU on PDNA-41 and
PDNA-52

Data Set Method
Sen
(%)

Spe
(%)

Acc
(%) MCC AUC

PDNA-41 E-HDSVM 44.0 95.2 92.7 0.340 0.851
GSVM-RD 52.3 90.9 88.9 0.297 0.836
GSVM-RC 33.5 97.5 94.3 0.340 0.805
SVM-RU 54.0 90.3 88.5 0.297 0.839

PDNA-52 E-HDSVM 51.8 94.9 92.5 0.405 0.876
GSVM-RD 51.0 94.0 91.5 0.371 0.868
GSVM-RC 43.8 96.8 93.8 0.412 0.854
SVM-RU 45.8 93.8 91.1 0.331 0.855
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trained E-HDSVM, CNN-A, and CNN-B on the new data set
PDNA-1151 and tested the trained models with PDNA-41 and
PDNA-52, respectively. Table 8 illustrates the generalization
performance comparisons between E-HDSVM, CNN-A, and
CNN-B on PDNA-41 and PDNA-52.

From Tables 7 and 8, the following two observations can be
made:
(1) A large-scale data set helps to improve the performances

of CNN models. It is found that the performances of CNN
models trained on a large-scale data set (i.e., PDNA-1151) are
better than those of CNN models trained on a relative small
data set (i.e., PDNA-543 or PDNA-335). Taking the
independent test data set PDNA-41 as an example, the
CNN-A and CNN-B trained with PDNA-1151 achieve a 12.1%
and 12.6%, respectively, improvement of MCC values in
comparisons with the CNN-A and CNN-B trained with

PDNA-543. As for the independent test data set PDNA-52, the
AUC values of CNN-A and CNN-B trained with PDNA-1151
are also 3.4% and 4.1%, respectively, higher than those of the
corresponding models trained with PDNA-335.
(2) E-HDSVM again performs better than CNN-A and

CNN-B even when all of the three models are trained on the
large-scale data set PDNA-1151. Compared to CNN-A and
CNN-B, E-HDSVM achieves averaged improvements of 2.0%
and 0.8%, respectively, of AUC values on the two independent
test data sets. We speculate that the following aspects may
account for the inferior performances of the CNN models.
First, since CNN is not specifically designed to deal with class
imbalance problem,66 it cannot perform well when there is a
serious class imbalance in the data set (e.g., DNA-binding data
set in this study). As described in Text S1, the batch data set in
each iteration used for training CNN-A is also a severe
imbalanced data set, which may cause the CNN model to learn
skewed knowledge leading to a deteriorated performance,
while in CNN-B, we construct a balanced batch data set by
random under-sampling from the original imbalanced training
data set, which partially relieves the negative impact of class
imbalance and thus improves the performance of the CNN
model (i.e., the performance CNN-B is better than that of
CNN-A, refer to Tables7 and 8). Nevertheless, the random
under-sampling changes the original data distribution and may
lose information, leading to a nonoptimal performance of the
CNN model. By contrast, E-HDSVM is specially designed to
solve the class imbalance problem. The above-mentioned
issues may explain why E-HDSVM achieves a better
performance than the CNN models on the considered DNA-
binding data sets.

Comparisons with Existing Predictors. Based on the
proposed E-HDSVM, we further implement a new sequence-
based predictor, called DNAPred, for the prediction of
protein−DNA binding residues. To demonstrate the strong
performance of DNAPred, we compare it with other popular
sequence-based protein−DNA binding site predictors on
PDNA-543, PDNA-335, PDNA-316, PDNA-41, and PDNA-
52, respectively.
Table 9 summarizes the prediction performances of

DNAPred and TargetDNA,39 which is one of the most

recently released predictors, on PDNA-543. For the purpose of
fairness, we take 10-fold cross-validation in the comparison
because TargetDNA is also evaluated on PDNA-543 under 10-
fold cross-validation. In addition, we compare DNAPred with
TargetDNA under two different thresholds, as does in
TargetDNA. One is the threshold that makes Sen ≈ Spe, and
the other is the threshold that makes FPR = 1 − Spe ≈ 5%,
where FPR denotes False Positive Rate.

Table 7. Performance Comparisons between E-HDSVM,
CNN-A, and CNN-B on the Five Protein−DNA Binding
Site Data Sets

Data Set Model
Sen
(%)

Spe
(%)

Acc
(%) MCC AUC

PDNA-543a E-HDSVM 44.2 95.2 91.9 0.375 0.861
CNN-A 46.2 93.2 90.1 0.335 0.848
CNN-B 51.8 92.7 90.0 0.364 0.853

PDNA-335a E-HDSVM 53.2 92.5 89.3 0.400 0.860
CNN-A 59.3 88.1 85.7 0.358 0.844
CNN-B 44.3 94.3 90.1 0.373 0.842

PDNA-316a E-HDSVM 49.9 95.7 92.2 0.455 0.883
CNN-A 51.5 94.2 90.9 0.418 0.871
CNN-B 47.2 95.9 92.2 0.439 0.870

PDNA-41b E-HDSVM 44.0 95.2 92.7 0.340 0.851
CNN-A 36.0 96.1 93.1 0.307 0.845
CNN-B 52.6 91.4 89.5 0.309 0.850

PDNA-52c E-HDSVM 51.8 94.9 92.5 0.405 0.876
CNN-A 55.5 90.7 88.7 0.329 0.849
CNN-B 47.7 94.8 92.1 0.370 0.860

aWe compare the performances of three models on PDNA-543,
PDNA-335, and PDNA-316 by 10-fold cross-validation. bWe evaluate
the performances of three models on independent test data set
PDNA-41. The corresponding training data set is PDNA-543. cWe
evaluate the performances of three models on independent test data
set PDNA-52. The corresponding training data set is PDNA-335.

Table 8. Generalization Performance Comparisons between
E-HDSVM, CNN-A, and CNN-B on PDNA-41 and PDNA-
52 with the New Constructed PDNA-1151 as Training Data
Set

Data Set Model
Sen
(%)

Spe
(%)

Acc
(%) MCC AUC

PDNA-41 E-HDSVM 48.8 94.3 92.1 0.349 0.858
CNN-A 44.4 95.2 92.7 0.344 0.850
CNN-B 41.4 96.0 93.3 0.348 0.854

PDNA-52 E-HDSVM 61.0 95.2 93.2 0.478 0.905
CNN-A 37.1 97.6 94.2 0.394 0.878
CNN-B 53.5 95.6 93.2 0.439 0.895

Table 9. Performance Comparisons between DNAPred and
TargetDNA on PDNA-543 over 10-Fold Cross-Validation

Predictor
Sen
(%)

Spe
(%)

Acc
(%) MCC AUC

TargetDNA (Sen ≈ Spe)a,c 77.0 77.1 77.0 0.304 0.845
DNAPred (Sen ≈ Spe)a 77.1 78.5 78.4 0.318 0.861
TargetDNA (FPR ≈ 5%)b,c 40.6 95.0 91.4 0.339 0.845
DNAPred (FPR ≈ 5%)b 44.9 95.0 91.7 0.373 0.861
aThe threshold T which makes Sen ≈ Spe in cross-validation is
chosen. bThe threshold T which makes FPR = 1 − Spe ≈ 5% in cross-
validation is chosen. cResults excerpted from TargetDNA.39
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From Table 9, it is easy to find that the proposed DNAPred
consistently outperforms TargetDNA for all five indices under
both of the considered thresholds. Taking MCC and AUC,
which are two overall performance evaluation indices, as
examples, DNAPred improves the value of MCC by 4.6% and
10.0%, respectively, under the thresholds that make Sen ≈ Spe
and FPR ≈ 5%; as to AUC, an improvement of 1.9% is also
observed under the two thresholds.
Further, we compare our predictor with TargetS42 and EC-

RUS68 on PDNA-335 under five-fold cross-validation, as
shown in Table 10. Again, the proposed DNAPred achieves

the best overall performances regarding MCC and AUC.
Compared with the second-best performer, i.e., EC-RUS,
improvements of 3.2% and 0.5% are achieved by DNAPred for
MCC and AUC, respectively.
The performance comparisons on PDNA-316 over 10-fold

cross-validation of DNAPred and other common protein−
DNA binding site predictors, including DBS-PRED,69

BindN,70 DNABindR,71 DISIS,19 DP-Bind,20 BindN-rf,16

MetaDBSite,17 and TargetDNA,39 are listed in Table 11.

The results illustrated in Table 11 intuitively demonstrate that
DNAPred enjoys better performance than the other eight
predictors in terms of MCC. Compared with TargetDNA, the
second best predictor among all predictors, under Sen ≈ Spe,
the values of Sen, Spe, Acc, and MCC of DNAPred are
enhanced by 2.6%, 2.4%, 2.4%, and 9.1%, respectively; under
FPR ≈ 5%, the MCC of DNAPred reaches 0.452, which is
20.5% higher than the corresponding value of TargetDNA.
Moreover, all indices of DNAPred under Sen ≈ Spe are better
than the values evaluated for DBS-PRED, DNABindR, DP-

Bind, and MetaDBSite. Taking DNABindR as an example, the
proposed predictor obtains 21.2%, 8.0%, 9.5%, and 60.9%
increases in Sen, Spe, Acc, and MCC, respectively. In addition,
we can notice that DISIS has the highest Spe value (98.0%) but
the lowest Sen (19.0%). The reason for the lower Sen is that
DISIS predicts too many false negatives.
To further highlight the generalization capability of our

predictor, we compare it with other state-of-the-art protein−
DNA binding site predictors by independent validation (the
process of independent validation refers to the section
“Performance Comparisons between E-HDSVM, GSVM-RU,
and SVM-RU”) on PDNA-41 and PDNA-52. Table 12 displays

the performance comparisons between BindN,70 ProteDNA,72

BindN+,73 MetaDBSite,17 DP-Bind,20 DNABind,74 TargetD-
NA,39 and DNAPred on PDNA-41. Under FPR ≈ 5%,
DNAPred obtains the highest MCC value of 0.337, which is
increased by 12.3% and 89.3% over TargetDNA and BindN+,
respectively. More significantly, all four indices of DNAPred
are higher than the values measured for MetaDBSite, and the
improvements of Sen, Spe, Acc, and MCC are 30.7%, 1.6%,
2.2%, and 52.5%, respectively. Under Sen ≈ Spe, although
DNAPred has a 3.3% decrease in MCC compared to
TargetDNA, it remains competitive in the comparisons with
BindN, ProteDNA, BindN+, MetaDBSite, and DP-Bind. For
example, the MCC of our method is 22.1% better than the
corresponding value of BindN+ (Spe ≈ 85%). As another
example, compared with BindN, the MCC value of DNAPred
is increased by 81.8%.
Table 13 illustrates the results by comparing DNAPred with

DNABR,18 alignment-based,42 MetaDBSite,17 and TargetS42

on PDNA-52. Compared to TargetS, DNAPred enjoys 25.4%,
7.4%, and 4.8% increases in terms of Sen, MCC, and AUC,
respectively. Moreover, the evaluation indices of our predictor
are remarkably better those of DNABR, alignment-based, and
MetaDBSite. Taking alignment-based as an example, its Sen,
Spe, Acc, and MCC are, respectively, 48.6%, 0.6%, 2.2%, and
53.1% lower than the values measured for DNAPred.
Additionally, we can see that MetaDBSite produces the
highest Sen value of 58.0%. However, the corresponding Spe
is lowest among the five predictors. The reason is that too
many negative samples are predicted as positives in
MetaDBSite. Along with the scenario that the number of

Table 10. Comparisons with EC-RUS and TargetS on
PDNA-335 over Five-Fold Cross-Validation

Predictor Sen (%) Spe (%) Acc (%) MCC AUC

TargetSa,c 41.7 94.5 89.9 0.362 0.824
EC-RUSb 48.7 95.1 92.6 0.378 0.852
DNAPredc 54.3 91.7 88.6 0.390 0.856

aResults excerpted from TargetS.42 bResults excerpted from EC-
RUS.68 cThe threshold T which maximizes the value of MCC in cross-
validation is chosen.

Table 11. Performance Comparisons between DNAPred
and the State-of-the-Art Predictors on PDNA-316 over 10-
Fold Cross-Validation

Predictor Sen (%) Spe (%) Acc (%) MCC

DBS-PREDa 53.0 76.0 75.0 0.170
BindNa 54.0 80.0 78.0 0.210
DNABindRa 66.0 74.0 73.0 0.230
DISISa 19.0 98.0 92.0 0.250
DP-Binda 69.0 79.0 78.0 0.290
BindN-rfa 67.0 83.0 82.0 0.320
MetaDBSitea 77.0 77.0 77.0 0.320
TargetDNA (Sen ≈ Spe)a,b 78.0 78.0 78.0 0.339
TargetDNA (FPR ≈ 5%)a,c 43.0 95.0 91.0 0.375
DNAPred (Sen ≈ Spe)b 80.0 79.9 79.9 0.370
DNAPred (FPR ≈ 5%)c 52.1 95.1 91.8 0.452

aResults excerpted from TargetDNA.39 bThe threshold T which
makes Sen ≈ Spe in cross-validation is chosen. cThe threshold T which
makes FPR ≈ 5% in cross-validation is chosen.

Table 12. Comparisons with Other Popular Predictors on
PDNA-41 under Independent Validation

Predictor Sen (%) Spe (%) Acc (%) MCC

BindNa 45.6 80.9 79.2 0.143
ProteDNAa 4.8 99.8 95.1 0.160
BindN+ (FPR ≈ 5%)a,b 24.1 95.1 91.6 0.178
BindN+ (Spe ≈ 85%)a,c 50.8 85.4 83.7 0.213
MetaDBSitea 34.2 93.4 90.4 0.221
DP-Binda 61.7 82.4 81.4 0.241
DNABinda 70.2 80.3 79.8 0.264
TargetDNA (Sen ≈ Spe)a,d 60.2 85.8 84.5 0.269
TargetDNA (FPR ≈ 5%)a,b 45.5 93.3 90.9 0.300
DNAPred (Sen ≈ Spe)d 76.1 76.7 76.1 0.260
DNAPred (FPR ≈ 5%)b 44.7 94.9 92.4 0.337

aResults excerpted from TargetDNA.39 bThe threshold T which
makes FPR ≈ 5% in cross-validation is chosen. cThe threshold T
which makes Spe ≈ 85% in cross-validation is chosen. dThe threshold
T which makes Sen ≈ Spe in cross-validation is chosen.
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negatives is far more than that of positives, the performance of
MetaDBSite with respect to MCC is lower.
Case Studies. To further demonstrate the effectiveness of

the proposed predictor, we select two DNA-binding proteins,
named 4WWC-B (PDB ID: 4WWC, chain: B) and 5BMZ-D
(PDB ID: 5BMZ, chain: D), from the independent test data
set PDNA-41 for case studies. For each selected protein, we
use the three predictors (i.e., DNAPred, TargetDNA,39 and
DNABind74) that show the best MCC performances in Table
12 to predict its DNA-binding residues, where TargetDNA and
DNABind are available at http://csbio.njust.edu.cn/bioinf/
TargetDNA/ and http://mleg.cse.sc.edu/DNABind/, respec-
tively. Figures 5 and 6 illustrate the prediction results of
4WWC-B and 5BMZ-D, respectively, by the three predictors.
From Figure 5, it is easy to see that the proposed DNAPred

outperforms both TargetDNA and DNABind on 4WWC-B.
DNAPred correctly identifies 15 out of the 17 observed
binding residues (i.e., B13, S37, E38, R39, S48, R49, M50,
T51, R53, R67, K69, G70, R71, G72, and T73, highlighted in
blue), and only 1 nonbinding residue (i.e., I47, highlighted in
red) is mistakenly predicted as a binding residue. By contrast,
TargetDNA correctly identifies 14 out of the 17 binding
residues (i.e., B13, E38, R39, S48, R49, M50, T51, R53, R67,
K69, G70, R71, G72, and T73) but with 4 false positives (i.e.,
K6, I47, Y205, and G221). DNABind predicts 15 true
positives, which are identical to those of DNAPred, but it
mistakenly predicts 38 nonbinding residues as binding
residues. As for 5BMZ-D, DNAPred also achieves the best
performance, with 14 true positives, 6 false positives, and 3
false negatives (TargetDNA: 13 true positives, 8 false positives,
and 4 false negatives. DNABind: 14 true positives, 10 false
positives, and 3 false negatives), as shown in Figure 6.

In addition, we found that DNABind had the worst
performance among the three predictors because it predicted
too many false positives. The underlying reason for this poor
performance can be explained as follows. DNABind was
trained on a small DS123 data set74 that only consisted of 2912
DNA-binding sites and 16,016 nonbinding sites, while
TargetDNA and DNAPred were both trained on a relatively
larger data set, PDNA-543, which contained 9549 DNA-
binding sites and 134,995 nonbinding sites. A larger data set
may contain more discriminative information, which is
beneficial for training a machine-learning based predictor.
We believe this is one of the important reasons that account
for the poor performance of DNABind.

Large-Scale Application. To show the applicability of
DNAPred, a large-scale prediction is performed in this work as
follows. First, we downloaded 2572 protein sequences
deposited in the Swiss-Prot database47 between January 1,
2018, and December 31, 2018. Then, we used the CD-HIT-2D
software41 to reduce the sequence identity of the downloaded
sequences. Sequences that had more than 40% sequence
identity with the sequences in the training data set of
DNAPred (i.e., PDNA-543) were removed; the remaining
2441 sequences constituted a nonredundant large-scale data
set, denoted as PDNA-Large, which contained 1,297,707
amino acid residues. Finally, DNAPred was used to predict the
DNA-binding sites of the sequences in PDNA-Large, and the
corresponding prediction results can be downloaded at http://
csbio.njust.edu.cn/bioinf/dnapred. To facilitate a better under-
standing of protein−DNA interactions, we will periodically

Table 13. Performance Comparisons between the Proposed
Predictor DNAPred and Other Existing Predictors on
PDNA-52

Predictor Sen (%) Spe (%) Acc (%) MCC AUC

DNABRa 40.7 87.3 84.6 0.185 -
alignment-baseda 26.6 94.3 90.5 0.190 -
MetaDBSitea 58.0 76.4 75.2 0.192 -
TargetSa,b 41.3 96.5 93.3 0.377 0.836
DNAPredb 51.8 94.9 92.5 0.405 0.876

aResults excerpted from TaegetS;42 ‘−’ indicates that the correspond-
ing value does not exist. bThe threshold T which maximizes the value
of MCC in cross-validation is chosen.

Figure 5. Visualization of the prediction results for 4WWC-B: (A) DNAPred, (B) TargetDNA, and (C) DNABind. The color scheme is used as
follows: DNA in yellow, true positives in blue, false positives in red, false negatives in green. The pictures are made with PyMOL.75

Figure 6. Visualization of prediction results for 5BMZ-D: (A)
DNAPred, (B) TargetDNA, and (C) DNABind. The color scheme is
used as follows: DNA in yellow, true positives in blue, false positives
in red, false negatives in green. The pictures are made with PyMOL.75
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release the prediction results of DNAPred for newly deposited
protein sequences in the Swiss-Prot database.

■ CONCLUSIONS

In this study, a new machine-learning algorithm (E-HDSVM),
which incorporates multiple HDSVMs by EAdaBoost, is
designed to effectively learn from imbalanced data. Using the
proposed E-HDSVM, a robust sequence-based predictor is
developed for the prediction of protein−DNA binding
residues, called DNAPred. By comparison with several state-
of-the-art sequence-based predictors on five protein−DNA
binding site data sets, the efficacy of the proposed predictor
has been demonstrated. The superior performance of
DNAPred is mainly attributed to the strong capability of E-
HDSVM for effectively dealing with the data imbalance
problem.
Although DNAPred achieves some improvements, there is

still room to further enhance its performance due to the
following three points. First, the input feature is generated by
serially combining PSSM, PSS, PRSA, and AAFD-BN feature
vectors, which may result in information redundancy. In our
future work, we will take into account other strategies, such as
parallel feature fusion,76 feature reduction,77 and feature
selection,78 to effectively utilize multiple types of features.
Moreover, EAdaBoost was used in this study, but it may not be
the best ensemble algorithm for the task. As is known,
EAdaBoost shares the advantages of simple principle and easy
implementation and overcomes the overfitting problem.
However, there is no evidence that EAdaBoost is the best
algorithm for decision-level fusion. Therefore, we will consider
employing other advanced ensemble learning algorithms in the
future. Finally, it might be a promising way to further improve
the performance of DNAPred by incorporating more
informative heterogeneous features that are complementary
to the encoded features that are currently being utilized. A
good choice is to use features that can be calculated by using
feature-generating software tools or online web servers from
the DNA, RNA, or protein sequences.
It should be noted that the proposed DNAPred is

specifically designed to predict DNA-binding residues from
protein sequences. In view of the diversity of ligands and the
importance of protein−ligand interactions, we will investigate
the applicability of DNAPred to other types of ligand-binding
site prediction problems, e.g., RNA-binding sites79 and ATP-
binding sites,80 in future work.
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