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 Abstract: Aim and Objective: The accurate identification of protein-ligand binding sites helps 

elucidate protein function and facilitate the design of new drugs. Machine-learning-based methods 

have been widely used for the prediction of protein-ligand binding sites. Nevertheless, the severe 

class imbalance phenomenon, where the number of nonbinding (majority) residues is far greater 

than that of binding (minority) residues, has a negative impact on the performance of such 

machine-learning-based predictors.  

Materials and Methods: In this study, we aim to relieve the negative impact of class imbalance by 

Boosting Multiple Granular Support Vector Machines (BGSVM). In BGSVM, each base SVM is 

trained on a granular training subset consisting of all minority samples and some reasonably 

selected majority samples. The efficacy of BGSVM for dealing with class imbalance was validated 

by benchmarking it with several typical imbalance learning algorithms. We further implemented a 

protein-nucleotide binding site predictor, called BGSVM-NUC, with the BGSVM algorithm.  

Results: Rigorous cross-validation and independent validation tests for five types of protein-

nucleotide interactions demonstrated that the proposed BGSVM-NUC achieves promising 

prediction performance and outperforms several popular sequence-based protein-nucleotide 

binding site predictors. The BGSVM-NUC web server is freely available at 

http://csbio.njust.edu.cn/bioinf/BGSVM-NUC/ for academic use. 
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1. INTRODUCTION 

 Proteins often need to interact with other molecules 
(ligands) through binding sites to participate in various 
cellular and biological processes. Hence, the accurate 
identification of protein-ligand binding sites helps clarify 
protein function and facilitate the design of new drugs [1, 2]. 
However, traditional biochemical methods for identifying 
protein-ligand binding sites are time-consuming and 
expensive and cannot meet the urgent demands of related 
research. In light of this, researchers in this field have 
focused on developing computational methods, such as 
template-based methods [3-5] and machine-learning-based 
methods [6, 7], to quickly and accurately predict protein-
ligand binding sites in recent years.  
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 Template-based methods identify the binding sites of the 
query protein using the sequence and/or structure 
information of protein templates that were found by the 
appropriate alignment or comparison algorithms. For 
example, Roy et al. [3] developed COFACTOR for the 
identification of protein-ligand interactions by using protein 
structural models based on a global-to-local sequence and 
structural comparison algorithm; Yang et al. [4] designed 
COACH, which predicts protein-ligand binding sites based 
on a binding-specific substructure comparison algorithm 
(TM-SITE) and a sequence profile alignment (S-SITE). 
Other popular template-based methods include CASTp [8], 
FINDSITE [9], ConCavity [10], SITEHOUND [11], and 
3DLigandSite [12]. However, the performances of these 
methods are heavily dependent on the number and quality of 
the protein templates found, which limits their applicability, 
especially in situations where an insufficient number of 
templates with known tertiary structures are available.  

 Machine-learning-based methods have emerged as a 
promising route for the accurate identification of protein-

1875-5402/19 $58.00+.00 © 2019 Bentham Science Publishers 
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ligand binding sites. For example, Pupko et al. [13] proposed 
Rate4Site, which identifies the functionally important 
regions in proteins by using the maximum likelihood (ML) 
principle [14] to estimate the level of conservation of each 
amino acid; Shu et al. [15] designed a machine-learning-
based method that combines a support vector machine 
(SVM) [16] classifier with a homology-based predictor, to 
identify zinc-binding sites from protein sequences; Chen 
et al. [17] developed a predictor (NsitePred) that combines 
SVM with the comprehensive features extracted from protein 
sequence, evolutionary profiles and several sequence-
predicted structural descriptors, to predict protein-nucleotide 
binding residues with improved accuracy; Panwar et al. [18] 
proposed a SVM-based ligand-specific vitamin-binding sites 
predictor; Yu et al. [19] designed a sequence-based template-
free predictor (TargetATPsite) that utilizes a novel image 
sparse representation technique to code input features and 
combines the adaptive boosting (AdaBoost) algorithm with a 
random under-sampling technique to eliminate the class 
imbalance problem in the identification of ATP-binding 
residues; Chen et al. [20] introduced a random forest (RF) 
[21] based predictor, called LigandRFs that ensembles 
multiple RFs trained on balanced datasets to solve the data 
imbalance phenomenon in protein-ligand prediction. 

 Previous studies [6, 7] have witnessed the great success 

of machine-learning-based methods for the prediction of 

protein-ligand binding sites. Nevertheless, an inevitable 

critical issue for all machine-learning-based methods is the 

class imbalance phenomenon where the number of binding 

sites (minority class) is significantly fewer than that of non-

binding sites (majority class) [19, 22, 23]. Traditional 

statistical machine learning algorithms will fail to achieve 

good performance under the class imbalance scenario 

because the prediction results tend to be biased toward the 

majority class [24-26]. Taking SVM, which is one of the 

most used machine learning algorithms for the prediction of 

protein-ligand binding sites, as an example, related studies 

have demonstrated that SVM often performs effectively on 

balanced datasets but could generate suboptimal results with 

imbalanced datasets [27-29]. The underlying reason can be 

explained as follows: the basic idea of SVM is mapping the 

samples from original feature space to a new high-dimension 

feature space and finding a separating hyperplane to classify 

the samples in this new space; therefore, the performance of 

SVM is depended on the separating hyperplane; if SVM is 

trained on an imbalanced dataset, the corresponding 

separating hyperplane will be pushed towards the minority 

class, which leads to an unexpected result that SVM more 

likely predicts minority samples to majority ones [27-29]. As 

another example, K-Nearest Neighbor (KNN) [30, 31], one 

of the classical machine-learning algorithms, also obtains the 

unsatisfied performances on imbalanced datasets [32] due to 

the following reason: for a query sample, KNN first finds k 

samples (neighbors), which are nearest to it in feature space, 

from training dataset, and then predicts it as one class which 

has the highest frequency among these k neighbors; thus, the 

predicted result of the query sample by KNN is completely 

determined by its k nearest neighbors; if training dataset is 

imbalanced, the k nearest neighbors of a query sample will 

be mainly composed of majority class; as a result, KNN 

tends to predict minority samples as majority ones.  

 To address the negative impact of class imbalance, many 
solutions, such as sample rescaling [33-35], active learning 
[36, 37], and kernel learning [38, 39], have been developed. 
Among these solutions, sampling rescaling, which balances 
the sizes of samples of different classes by changing the 
numbers of samples and distribution between classes, is the 
most straight-forward one and has been widely used as a 
basic strategy for obtaining a balanced dataset for training 
machine learning models [20, 40, 41].  

 Among a number of sample-rescaling-based methods, 
random under-sampling, which can get a parsimonious 
sampled training dataset, is the simplest and most straight 
forward one. Considering the simplicity of random under-
sampling as well as the efficiency of SVM mentioned above, 
researchers attach more importance to deal with the class 
imbalance problem by combining SVM with random under-
sampling. For example, Kang et al. [33] proposed an 
ensemble of under-sampled SVMs (EUS SVMs), which 
involves three ensemble methods, namely majority voting, 
weighted voting, and function value aggregation, to 
incorporate multiple SVMs trained on subsets of the original 
imbalanced training dataset via random under-sampling; Yu 
et al. [42] developed an algorithm to ensemble multiple 
SVMs trained on several sub-datasets sampled from the 
original imbalanced dataset by using random under-
sampling. 

 However, random under-sampling does not always 
provide optimal performance because it can result in 
information loss. In the unique scenario where random 
under-sampling is combined with SVM, the information loss 
of samples may cause the loss of cues about the ideal 
hyperplane of SVM, which can lead to an unexpected result. 
Substantial effort has been devoted to finding more effective 
sampling-rescaling-based methods for solving class 
imbalance problems [43, 44]. Recently, Tang et al. [45, 46] 
developed a granular SVMs-repetitive under-sampling 
model, called GSVM-RU, which trains the SVM model 
based on granular computing [47] and under-sampling. 
Specifically, GSVM-RU first generates multiple subsets 
from the original imbalanced training datasets based on the 
concept of granular computing and then trains the SVM 
model on the final dataset, which is formed using the 
proposed aggregation methods, including “Discard” and 
“Combine”, to aggregate the multiple subsets obtained 
above.  

 We noticed that GSVM-RU is an effective model that 
elegantly combines SVM with under-sampling and has been 
demonstrated to be superior to traditional SVM on a series of 
imbalanced datasets. However, the performance of GSVM-
RU can be further improved by avoiding potential defects 
(loss and redundancy of sample information) in its 
aggregation methods (we will carefully investigate this point 
in Section 2.3).  

 Motivated by the merits of granular computing and the 
potential disadvantages of aggregation strategies in GSVM-
RU, in this study, we proposed an improved version of 
GSVM-RU by boosting multiple granular SVMs, called 
BGSVM, to address the class imbalance. More specifically, 
in BGSVM, we first obtain multiple granular SVMs, each of 
which is trained on a granular subset sampled from the 
original training dataset; then, the obtained multiple granular 
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SVMs are ensembled by using an enhanced AdaBoost 
(EAdaBoost) algorithm [48]. On one hand, BGSVM retains 
the merits of granular computing of GSVM-RU; on the other 
hand, the potential disadvantages of the aggregation methods 
in GSVM-RU are relieved by introducing the EAdaBoost 
algorithm to ensemble the multiple granular SVMs. 

 We performed rigorous comparison experiments 
regarding the prediction of binding sites for five types of 
nucleotide ligands that show severe class imbalance phenomena. 
The experimental results demonstrate that the proposed BGSVM 
is superior to GSVM-RU under the class imbalance scenario and 
that the predictor implemented with BGSVM, called BGSVM-
NUC, outperforms the state-of-the-art sequence-based protein-
nucleotide binding site predictors. The BGSVM-NUC web server 
is available at http://csbio.njust.edu.cn/bioinf/BGSVM-NUC/ for 
academic use. 

2. MATERIALS AND METHODS 

2.1. Benchmark Datasets 

 In this study, we used the dataset constructed by Chen  
et al. [17] as a benchmark dataset to evaluate the efficacy of 
the proposed BGSVM and compare the proposed predictor 
with existing protein-nucleotide binding site predictors. This 
benchmark dataset consists of a training set, called Train-
NUC, and an independent validation set, called Test-NUC.  

 Train-NUC is composed of 227, 321, 140, 105, and 56 
protein sequences (released into PDB before 10 March 2010) 
that bind to ATP, ADP, AMP, GDP, and GTP, respectively. 
For each type of the five nucleotides, the maximal pairwise 
sequence identity of the corresponding protein sequences is 
reduced less than 40% with CD-HIT software [49]. Test-
NUC consists of 17, 26, 20, 7, and 7 protein sequences 
(released into PDB after 10 March 2010) interacting with 
ATP, ADP, AMP, GDP, and GTP, respectively. Also, the 
maximal pairwise identity of the sequences for each type of 
the five nucleotides in Test-NUC is reduced less than 40% 
by CD-HIT. In addition, for each type of the five 
nucleotides, no sequence in Test-NUC shares more than 40% 
pairwise identity to sequences in Train-NUC. Train-NUC 
and Test-NUC can be easily downloaded at http://csbio. 

njust.edu.cn/bioinf/BGSVM-NUC/Data.html, and their 
detailed statistical compositions are summarized in Table 1.  

2.2. Feature Representation 

 In this study, two typical features, i.e., position-specific 
scoring matrix (PSSM) and predicted protein secondary 
structure (PPSS), are serially combined to form the feature 
representation of each residue in a protein sequence. 

2.2.1. Position-Specific Scoring Matrix Feature 

 Position-specific scoring matrix, which is one of the most 
important feature sources used in protein-ligand binding sites 
prediction, encodes evolutionary conservation information of 
a protein. For a given protein sequence with L  residues, we 
obtain its PSSM, which is L  rows and 20 columns numeric 
matrix, by using PSI-BLAST [50] to search against the 
Swiss-Prot database [51] through three iterations with E-
value = 0.001 as the cutoff. Then, the obtained PSSM is 
further normalized with the following logistic function (eq. 1): 

1
( )

1 exp(- )
f x

x
=

+        (1) 

 where x  is the original value in PSSM. Considering the 
fact that whether a residue will interact with ligands depends 
on not only the residue itself but also its neighboring 
residues, a sliding window of size W  centered on the 
residue is used to extract its PSSM feature vector. Previous 
studies [17, 42, 52] have demonstrated that W =17  is a 
better choice. Thus, the dimensionality of PSSM-derived 
feature vector of a residue is  17 × 20 = 340 .  

2.2.2. Predicted Protein Secondary Structure Feature 

 We extract predicted protein secondary structure (PPSS) 
feature of a residue by using PSIPRED [53] as follows: for a 
given protein sequence with L  residues, the output of 
PSIPRED is a L× 3  matrix. The three values in the i-th row 
of the matrix measure the probabilities of the i-th residue for 
belonging to three secondary structure classes, i.e., coil (C), 
helix (H), and strand (E), respectively. Again, a sliding 

Table1. Statistical compositions of the benchmark datasets. 

Dataset Ligand Type No. of Sequences (Num_Pos, Num_Neg)
 a
 Ratio 

b
 

Train-NUC 

ATP 227 (3393, 80409) 24 

ADP 321 (4688, 121158) 26 

AMP 140 (1756, 44009) 25 

GDP 105 (1577, 36561) 23 

GTP 56 (875, 21401) 24 

Test-NUC 

ATP 17 (248, 6974) 28 

ADP  26 (405, 10553) 26 

AMP 20 (263, 6057) 23 

GDP 7 (94, 2420) 26 

GTP 7 (134, 2678) 20 

a Num_Pos and Num_Neg represent the numbers of positive and negative samples, respectively; 
b Ratio = Num_Neg/Num_Pos, which measures the imbalance degree of a dataset. 
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window of size 17 is used to extract the PPSS feature of each 
residue and the dimensionality of the extracted feature vector 
is 17× 3=51 .  

2.3. Granular SVMs-Repetitive Under-Sampling Model 

(GSVM-RU) 

 GSVM-RU [45, 46] is based on granular computing [47]. 

The basic idea of granular computing is representing 

information in the form of granules and solving the target 

problem in each information granule [46]. The granule can 

be a subset, subspace, class, or cluster. In GSVM-RU, a 

granule refers to a subset of the original training dataset. 

More specifically, GSVM-RU extracts all positive samples 

to form a positive information granule, called PS, and 

generates multiple negative information granules by the 

following under-sampling steps: initially, GSVM-RU 

constructs an SVM on the original training dataset and then 

extracts all negative samples, which are represented by the 

negative support vectors of the trained SVM, to form a 

negative information granule; these negative samples are 

called negative local support vectors (NSLV); in the next 

step, a new training dataset is formed by removing the NSLV 

from the original training dataset; then, GSVM-RU 

constructs an SVM on the new training dataset and extracts 

all the negative support vectors of the newly trained SVM to 

form a new negative granule; the above procedure is 

repeated several times to generate multiple negative 

granules.  

 After obtaining multiple negative granules (i.e., NSLV), 

the goal of GSVM-RU is to aggregate the positive 

information granule (PS) with multiple negative information 

granules (NSLV) to form a final training dataset, denoted as 
FD; then, a final SVM classifier is trained on FD. 

Considering that it is difficult to determine the specific 

number of NSLVs before performing aggregation operation, 

GSVM-RU executes under-sampling and aggregation 

operation in turns: initially, the FD only contains PS; when a 

new NSLV is generated, it is aggregated with FD by using 

the reasonable strategies and an SVM is then trained on the 

new aggregated dataset FD. The procedure is continued until 

the newly generated NSLV cannot further improve the 

classification performance of the SVM trained on FD. 

 There are two aggregation strategies, i.e., “Discard” and 

“Combine”, in GSVM-RU [45, 46]. In “Discard” strategy, 

when a new NLSV  is generated, only the negative samples 

in this granule are added into FD and all negative samples in 

old negative information granules are removed from FD. By 

continuously removing NSLVs, “Discard” strategy pushes the 

hyperplane of an SVM towards the negative class to seek the 

ideal hyperplane. However, removing a large number of 

negative samples may cause serious information loss. To 

reduce information loss, “Combine” strategy has been 

developed. In “Combine” strategy, when a new NSLV is 

extracted, it is directly added into FD and all old negative 

granules are reserved in FD. Unfortunately, blindly 

combining the current granule with old granules easily leads 

to information redundancy. In light of this, we thus try to 

circumvent this issue by boosting multiple granular support 

vector machines. 

2.4. Boosting Granular Support Vector Machines 

 As an improved version of GSVM-RU, the proposed 
BGSVM aims to enhance the performance of GSVM-RU for 
dealing with class imbalance by improving the aggregation 
strategy while preserving the merit of granular computing. 

 GSVM-RU aggregates multiple negative granules with a 
positive granule and then trains a global SVM on the 
aggregated dataset [45, 46]. Unlike GSVM-RU, the proposed 
BGSVM aggregates multiple SVMs, which are trained on 
different granules sampled from the original training dataset, 
by using the EAdaBoost algorithm [48]. The information 
loss and redundancy incurred by data level aggregation in 
GSVM-RU could be partially relieved by decision level 
aggregation in BGSVM, hence the importance of this work. 
Fig. (1) presents a schematic diagram of the proposed 
BGSVM. As described in Fig. (1), the basic idea of BGSVM 
can be roughly described as follows.  

 In the training stage, two procedures are performed: 

granular SVMs generation (Procedure I) and granular SVMs 

ensemble (Procedure II). In the first procedure, BGSVM 

generates N  subsets (granules) of the training dataset, 

denoted as {N _Tri}i=1

N , by under-sampling, and constructs 

SVM on each granule to form a team of granular SVMs, 

denoted as SVM _Team . Second, the EAdaBoost algorithm 

is performed on SVM _Team  to select M (M ≤ N )  SVMs, 

which form a new set of SVMs denoted as SVM _ Selected , 

and the corresponding weight of each selected SVM is 

calculated. In the test stage, first, a given query input x is 

predicted by each SVM in SVM _ Selected , and a result set 

P, which contains the predicted result of each selected SVM, 

is generated; then, a post-processing procedure, based on the 

values in P and the weights of the SVMs in SVM _ Selected , 

is performed to obtain the final predicted result, denoted as 

H (x) . 

 It should be noted that we use EAdaBoost rather than the 
original AdaBoost [54] in Procedure II (this decision is 
explained in detail in Section 2.4.2). In EAdaBoost, an 
independent evaluation dataset (IED) that has no samples in 
common with the training dataset of Procedure I was used. 
Therefore, given a training dataset, denoted as TD, for 
BGSVM, we randomly select 20% of the samples from the 
TD to form the IED in Procedure II and use the remaining 
samples as the training dataset of Procedure I, denoted as 
RTD. As shown in Fig. (1), each procedure of BGSVM can 
be described in detail as follows. 

2.4.1. Granular SVMs Generation 

 The procedure for generating the granular SVMs can be 
further divided into the following two steps: 

Step I: Extract a positive information granule and multiple 
negative information granules 

 We extract all the positive samples in the training dataset 

(RTD) as a positive information granule, PS, which is the 

same as what was done in GSVM-RU; then, an SVM is 

trained on RTD and all the negative support vectors of the 

trained SVM are extracted as a negative information granule,  
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Fig. (1). The schematic diagram of the proposed BGSVM. 

denoted as 
1NLSV ; after that, the negative samples in 

1NLSV  

are removed from the RTD and the remaining set is taken as 

the new training dataset, represented as NTD1; then, a new 

SVM is trained on NTD1, and all negative support vectors of 

the newly trained SVM are extracted to form a new negative 

granule, called 
2NLSV ; this practice continues until the ratio 

between the number of negative samples and the number of 

positive samples in the newly generated training dataset is 

equal to or less than 1. At this point, we extract a set of 

negative information granules, denoted as 

1{ }N
i iNLSV_Set NLSV == , where N  is the number of 

extracted negative information granules. 

Step II: Train a team of base classifiers based on PS  and 

NLSV_Set  

 Each 
iNLSV NLSV_Set∈  is combined with PS  to form a 

granule-specific training subset, denoted as 
iN_Tr . Then, we 

train a granular base SVM, called 
iSVM , on each iN_Tr  . 

Accordingly, we obtain a team of granular base SVMs, 

denoted as 
1{ }N

i iSVM_Team SVM == .  

 In this study, we implement the SVM classifier by using 
LIBSVM software [55], which is freely available at 
http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Here, the radial 
basis function (RBF) is selected as the kernel function, and 
two parameters, i.e., penalty parameter C and RBF kernel 

width parameter γ , are optimized by the grid search 
strategy of the LIBSVM tool over five-fold cross-validation. 

2.4.2. Granular SVMs Ensemble 

 In this procedure, BGSVM provides the final ensembled 
classifier by boosting multiple granular SVMs in SVM_Team
. Among various boosting algorithms, AdaBoost algorithm is 
the most frequently used one. As described in [54], 
AdaBoost is an iterative algorithm; in each iteration, it first 
evaluates the error rate of the base classifier using evaluation 
samples and calculates the weight of the base classifier. 
After multiple iterations, the final ensemble classifier is 
generated by combining several base classifiers with their 
weights. However, the original AdaBoost often leads to 
over-fitting. The underlying reason is that samples in the 
training dataset are used as evaluation samples; in other 
words, the evaluation samples and training samples originate 
from the same dataset; as a result, the ensemble classifier 
shows outstanding performance on the training dataset but 
poor generalization performance on the test dataset.  

 To overcome over-fitting, we adopted an EAdaBoost 
algorithm [48] in this work. Compared with the original 
AdaBoost, EAdaBoost uses an independent evaluation 
dataset (IED), which has no samples in common with the 
training dataset used in Procedure I, to evaluate the error 
rates of the base classifiers. The procedure for ensembling 
multiple granular SVMs with EAdaBoost is summarized in 
Algorithm 1.  

Extract All 
Positive Samples

Extract All Negative 
Support Vectors of the 

Trained SVM 
SVM

Initialization: i 1;NTD RTD;
Trian SVM on RTD

i i+1;
Train SVM on NTD

...
...

Combine PS 
with NLSV

Combine PS 
with NLSV

Combine PS 
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Combine PS 
with NLSV

Query Input x
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1

2

i

N

1

2

1

2
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N
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from NTD   

EAdaBoost
Algorithm

Ratio>1
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Set P

Procedure II

1N_Tr

2N_Tr

...

N_Tr

N_Tr
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... ...

i

1

2

N

...
...

Test Stage 

iRTD NTDi i

i

i-1

i

Procedure I

0
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 As described in Algorithm 1, taking the i-th iteration as 

an example, first, the IED is used to calculate the error rate 

of SVMi , denoted as iε , by Eq. (2); then, if 0 0.5iε< < , the

SVMi  is selected from SVM_Team  and the corresponding 

weight, denoted as βi , can be calculated by Eq. (3); 

otherwise,  the SVMi  is discarded; finally, the weight of 

each evaluation sample is updated by Eq. (4). After N 

iterations, we will obtain a set of selected base SVMs, 

denoted as SVM_Selected ={SVM Ek
}k=1

M , with a corresponding set 

of base classifier weights, denoted as SVM_Weight ={βEk
}k=1

M , 

where SVM Ek
 denotes the

kE -th SVM in SVM_Team , 

[1, ]kE N∈ , E
1
< E

2
<�< Ek <�< EM

, βE
1

+ βE
2

+ ...+ βEM
=1 , 

and M  is the number of selected base classifiers. Then, the 

decision function of the ensembled classifier can be 

formulated as follows: 

( )
1

( )
k k

M
E Ek

H x SVM xβ
=

= ⋅∑   (5) 

where x  is the query input and ( )
kESVM x  is the output of 

base classifier 
kESVM  under input x . Without loss of 

generality, in this study, we suppose that each base classifier 

predicts the probability of a query sample x  for belonging 

to the positive class.  

2.4.3. Post-Processing Procedure 

 For a query input x , we can obtain the initial prediction 

of the ensembled classifier, i.e., ( )H x , by using Eq. (5). Let 

1{ }
k

M
E kP p ==

 be the set of predictions of the M  base 

Algorithm 1:  Ensembling multiple granular SVMs with EAdaBoost 

Input:  : a team of granular base SVMs; 

: independent evaluation dataset, where  is the j-th evaluation sample and  is the number of evaluation samples 

Output: : a set of selected granular SVMs; : the weights set of selected granular SVMs 

Initialization: ; ; ; ; , , where  is the weight of the j-th evaluation 

sample in the i-th iteration 

1 

Calculate the error rate of , denoted as , by Eq. (2) 

                                                (2) 

where  if  misclassifies ; otherwise, . 

2 If or , , , , go to Step 1;  

3 

Calculate the weight of , denoted as , by Eq. (3) 

                                                   (3) 

4 

, where  is the index of the k-th base SVM selected from ;  

Add and to and , respectively: , 

; 

5 Update the weight of each evaluation sample by Eq. (4) 

 
                                          (4) 

6 
; ; if , go to Step 1; otherwise, normalize the values of : , , 

where  is the number of selected base SVMs. 

Return ,  
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classifiers for a query input x , where ( )
k kE Ep SVM x=

 is the 

probability of query sample x  for belonging to the positive 

class predicted by base classifier kESVM . 

 To further improve the prediction performance, we 
propose a post-processing technique based on the following 
observations. 

 Observation: in most cases, the probability of a query 

sample for belonging to positive class predicted by 
kESVM
 

is lower than that predicted by 1kESVM
+ , i.e., 1k kE Ep p

+
≤   

(1 k M≤ < ). 

Table 2. The percent of testing samples that conform to the 

observation for the five types of nucleotides over 

five-fold cross-validation. 

 ATP ADP AMP GDP GTP 

Percent (%) 83.3 80.8 81.8 75.3 83.1 

 

 We calculated the percent of testing samples that 
conform to the above observation for each type of nucleotide 
over five-fold cross-validation, as shown in Table 2. It can 
be found over 80% of testing samples conform to this 
observation for four out of the five types of nucleotides, i.e., 
ATP, ADP, AMP, and GTP. The underlying reason for this 
observation can be qualitatively explained as follows:  

 The SVM Ek
 is trained on the dataset that combines PS  

with NLSVEk
, while the SVM Ek+1

 is trained on the dataset 

that combines PS  with NLSVEk+1

. By revisiting the training 

procedures of the proposed BGSVM described above, we 

know that Ek < Ek+1
 and NLSVEk

 is more close to the 

positive samples than NLSVEk+1

. The relative positions of 

NLSVEk
 and 

1kENLSV
+  

are intuitively illustrated in Fig. (2). 

In other words, the separating hyperplane of SVM Ek
 is more 

close to the positive samples than that of SVM Ek+1

, which 

explains why SVM Ek+1

 is more likely to predict a query 

sample as positive if compared with SVM Ek
. 

 Considering the rationality of the observation mentioned-
above, we thus developed a simple post-processing 
procedure for those query samples that do not conform to the 
observation by re-arranging the predictions of base 
classifiers as follows: 

For a query input x , the predictions of the M  base 

classifiers are formulated as 1{ }
k

M
E kP p ==

. If there exist 

i jE Ep p≥
(1 i j M≤ < ≤ ), i.e., the predictions of base classifiers 

do not conform to the observation, we re-arrange the M  

predictions in P  in ascending order and get 
' 1' { }
k

M
kE

P p == , 

where 
' '
i jE E

p p≤  for any i j<  ( 1 ,i j M≤ ≤ ). Then, the re-

arranged 
' 1' { }
k

M
kE

P p ==  is considered as the predictions of 

the M  base classifiers, i.e., p
Ek

' � SVM Ek
x( ) . After this 

post-processing procedure, the final prediction of the 

ensembled classifier can be formulated as eq (6): 

'
1

( )
k k

M
E Ek

H x pβ
=

= ⋅∑       (6) 

where 
kEβ  is the weight of the base classifier kESVM . 

2.5. Evaluation Indices 

 In this work, four evaluation indices [56-60], i.e., 
Sensitivity (Sen), Specificity (Spe), Accuracy (Acc), and 
Matthew’s Correlation Coefficient (MCC) were used to 
evaluate the prediction performances of predictors as follows 
eq (7-10): 

Fig. (2). The relative positions of  and . The circled points with ‘+’ inside denote the positive samples, the circled points 

with ‘-’ inside denote the negative support vectors, and the dashed lines are separating hyperplanes. 
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Sen = TP
TP + FN

 (7) 

Spe = TN
TN + FP

 (8) 

Acc = TP +TN
TP + FP +TN + FN

 (9) 

MCC = TP ⋅TN − FP ⋅FN
(TP + FP) ⋅ (TP + FN ) ⋅ (TN + FP) ⋅ (TN + FN )

(10) 

 where TP is the number of correctly classified positive 
samples, FN is the number of the positive samples 
misclassified as negatives, TN is the number of the correctly 
classified negative samples, and FP is the number of 
negative samples misclassified as positives. 

 The above four indices, including the MCC which 
provides the overall measurement of the quality of the binary 
predictions, are threshold-dependent. In all experiments of this 
study, we selected the threshold which maximizes the value of 
MCC on the training set over five-fold cross-validation test. 
To further evaluate the overall performance of a predictor on 

imbalanced datasets, we used the area under the receiver 
operating characteristic (ROC) curve (AUC), which is 
threshold-independent, as another critical evaluation index. 

3. RESULT AND DISCUSSION 

3.1. Classification Performances of Base Granular SVMs 

in BGSVM 

 We evaluated the classification performance of each base 
granular SVMi  in SVM_Team . Since each SVMi  is trained 
on a dataset that combines PS  with  NLSVi , we thus can 
investigate the relative importance of each NLSVi  by 
evaluating the performance of the corresponding SVMi . 

 For each type of the five nucleotides, we evaluated the 
overall performance, measured by AUC, of each granular 
SVMi  in SVM_Team  in BGSVM on the corresponding 
training dataset over five-fold cross-validation. Table 3 
summarizes the AUC performances of base granular SVMs 
on Train-NUC over five-fold cross-validation for five types 
of nucleotides, while Fig. (3) plots the variation curve of 
AUC versus base granular SVM ( SVMi ) for each type of the 
five nucleotides.  

 Interesting phenomena can be observed from Table 3 and 
Fig. (3) as follows:  

Table 3. The AUC performances of base granular SVMs on Train-NUC over five-fold cross-validation for five types of nucleotides. 

Base Granular SVM ATP ADP AMP GDP GTP 

SVM1 0.895 0.915 0.859 0.922 0.862 

SVM2 0.892 0.918 0.864 0.928 0.865 

SVM3 0.867 0.897 0.834 0.905 0.846 

SVM4 0.823 0.863 0.733 0.895 0.748 

SVM5 0.739 0.804 - 0.814 - 

SVM6 0.657 0.710 - - - 

SVM_Num a 6 6 4 5 4 

SVM_Best b SVM1 SVM2 SVM2 SVM2 SVM2 
a SVM_Num indicates the number of SVMs in SVM_Team; 
b SVM_Best is the SVM which has the highest AUC in SVM_Team; 

‘-’ indicates that the corresponding value does not exist. 

 

Fig. (3). The variation curve of AUC versus base granular SVM ( ) for each type of the five nucleotides.  iSVM
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 For four out of the five types of nucleotides, i.e., ADP, 

AMP, GDP, and GTP, it is found that the AUC performance 

of base granular SVMi  first enhances and then decreases 

with the increase of the value of i. The AUC performance 

reaches maximum when i = 2  for the 4 ligands, denoting 

that SVM
2

 trained on a dataset obtained by combining PS  

with NLSV
2
 can achieve the best classification performance. 

When i > 2 , the value of AUC gradually decreases with the 

increase of the value of i. This phenomenon can be explained 

as follows: initially, the separating hyperplane of SVM
1

 

trained on a dataset that combines NLSV
1
 with PS  may be 

too close to positive samples, thus SVM
1

 more likely 

predicts positive samples to negative ones; after gradually 

removing NLSVi  ( i >1 ) from the original training dataset, 

the separating hyperplane of SVMi  is moved towards 

negative samples; hence, the classification performance of 

SVMi  could be improved; when the separating hyperplane 

of SVMi  is moved at or close to the ideal hyperplane, 

SVMi  achieves the best performance (e.g., =2i  for ADP, 

AMP, GDP, and GTP in this study); after arriving at or close 

to the ideal hyperplane, the separating hyperplane of SVMi
(e.g., 2i >  for ADP, AMP, GDP, and GTP in this study) may 

be moved more and more towards negatives samples if we 

further remove NLSVs , which makes the prediction of 

SVMi  is skewed to positive class, leading to a deteriorate 

AUC performance. 

 We also observe that the AUC performance of base 

granular SVMi  for ATP continuously decreases with the 

increase of the value of i. The best AUC performance is 

achieved when i =1 , indicating that the separating 

hyperplane of SVM
1

 trained on a dataset obtained by 

combining PS  with NLSV
1
 is considerably ideal compared 

with that of other base granular SVMi  ( i ≥ 2 ). 

 Two conclusions can be drawn from the above two 

phenomena: first, it is feasible to seek a better separating 

hyperplane by continuously removing NLSVs from an 

imbalanced training dataset; second, the number of base 

granular SVMs and the optimal base granular SVM in 

SVM_Team  are dataset-dependent.   

 

3.2. Classification Performance of BGSVM 

 In this selection, we evaluated the prediction performance 
of BGSVM. For five types of nucleotides, the performances 
of the proposed BGSVM on the corresponding training 
datasets over a rigorous five-fold cross-validation procedure 
are summarized in Table 4. 

 From Table 4, it is found that the values of the evaluation 
indices of BGSVM for five types of ligands vary in different 
ranges. For examples, the Sensitivity (Sen) varies from 
37.3% to 67.5%, the Specificity (Spe) from 98.9% to 99.6%, 
and the Accuracy (Acc) from 96.6% to 98.3%. Moreover, it 
can be found that BGSVM yields AUC>0.87 and MCC>0.44 
for all five types of nucleotides. With respect to AUC and 
MCC, the GDP reaches the highest values, which are 0.933 
and 0.765, respectively, among the five types of nucleotides. 
On the contrary, AMP has the lower values of AUC and 
MCC, which are 0.873 and 0.449, respectively. There exist 
about 6% gap of AUC and 22% gap of MCC between GDP 
and AMP. We speculate that these gaps are caused by the 
imbalanced distribution of training datasets.  

 To investigate the mechanism of BGSVM, we further 
compared it with the SVM_Best, which has the highest AUC in 
SVM_Team.  Fig. (4) illustrates the detailed performance 
comparisons between BGSVM and SVM_Best  on the 
corresponding training datasets over five-fold cross-validation. 

 From Fig. (4), we can observe that the performance of the 
proposed BGSVM always performs better than SVM_Best  
in terms of AUC, Spe, Acc, and MCC for all the five 
nucleotides. For example, the values of MCC of BGSVM are 
0.561, 0.657, 0.449, 0.765, and 0.609, which are 
approximately 0.1%, 4.9%, 8.4%, 3.7%, and 11.9% higher 
than the MCC values produced by SVM_Best , for ATP, 
ADP, AMP, GDP, and GTP, respectively. Results in Fig. (4) 
demonstrate that the ensembled predictor obtained by 
boosting multiple granular SVMs does help to improve 
prediction performance even on imbalanced dataset. 

3.3. Performance Comparisons between BGSVM, 

GSVM-RU, and SVM-RU 

 We compared the performance of BGSVM with that of 
two under-sampling-based prediction models. Here, SVM 
with random under-sampling, denoted as SVM-RU, is used 
as the baseline model. In SVM-RU, randomly under-
sampling is applied to the majority class and a balanced 
dataset is obtained; then, a global SVM model is trained on 
the balanced dataset. Considering that BGSVM is based on 
GSVM-RU [45, 46], we also compared BGSVM with 
GSVM-RU. It is noted that GSVM-RU has two aggregation  

Table 4. Performances of the proposed BGSVM on the training datasets for five types of nucleotides over five-fold cross-validation 

Ligand Type Sen (%) Spe (%) Acc (%) MCC AUC 

ATP 48.4 99.1 97.0 0.561 0.901 

ADP 62.1 99.1 97.7 0.657 0.924 

AMP 37.3 98.9 96.6 0.449 0.873 

GDP 67.5 99.6 98.3 0.765 0.933 

GTP 47.3 99.6 97.5 0.609 0.872 
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Fig. (4). Performance comparisons between the proposed BGSVM and SVM_Best over five-fold cross-validation.  

Table 5. Performance comparisons between BGSVM, GSVM-RU, and SVM-RU for five types of ligands over five-fold cross-

validation. 

Ligand Type Method Sen (%) Spe (%) Acc (%) MCC AUC 

ATP 

BGSVM 48.4 99.1 97.0 0.561 0.901 

GSVM-RU 37.6 99.5 97.0 0.523 0.891 

SVM-RU 41.9 98.7 96.4 0.474 0.885 

ADP 

BGSVM 62.1 99.1 97.7 0.657 0.924 

GSVM-RU 53.2 99.5 97.7 0.638 0.917 

SVM-RU 51.9 99.0 97.3 0.576 0.909 

AMP 

BGSVM 37.3 98.9 96.6 0.449 0.873 

GSVM-RU 31.8 99.3 96.7 0.437 0.862 

SVM-RU 30.4 98.9 96.2 0.379 0.850 

GDP 

BGSVM 67.5 99.6 98.3 0.765 0.933 

GSVM-RU 59.7 99.7 98.1 0.727 0.928 

SVM-RU 64.6 99.4 98.0 0.717 0.923 

GTP 

BGSVM 47.3 99.6 97.5 0.609 0.872 

GSVM-RU 42.2 99.7 97.4 0.589 0.837 

SVM-RU 45.6 99.4 97.2 0.569 0.862 

 
strategies (“Discard” and “Combine”) and choosing the 
appropriate aggregation strategy is a critical step of GSVM-
RU. In light of this, here we adopted the hybrid aggregation 
strategy recently developed by Tang et al. [46] to perform 
aggregation in GSVM-RU. This strategy can be described as 
follows: both the “Discard” and the “Combine” aggregations 
are executed when the second negative granule is extracted; 
then, the winner (“Discard” or “Combine”) which can achieve 
better performance will be used for next aggregation. Table 5 
summarizes the detailed performance comparisons between 
BGSVM, GSVM-RU, and SVM-RU for five types of ligands 
over five-fold cross-validation.  

 It is easy to find from Table 5 that the proposed BGSVM 
outperforms both GSVM-RU and SVM-RU for all the five 
ligands with highest values of AUC and MCC. We notice that the 
proposed BGSVM performs much better than SVM-RU with 
highest improvements of 2.3% and 8.7% regarding AUC and 
MCC, respectively, for AMP and ATP. Compared with GSVM-
RU, which is the second-best performer, BGSVM also achieves 
approximately averaged improvements of 1.4% and 2.5% 
regarding AUC and MCC, respectively. In terms of AUC, the 
maximal improvement (3.5%) over GSVM-RU is achieved by 
BGSVM on GTP. As to MCC, BGSVM achieves the maximal 
improvement (3.8%) over GSVM-RU for both ATP and GDP. 
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Table 6. Performance comparisons between BGSVM, GSVM-RU, and SVM-RU on the independent validation datasets for the five 

types of nucleotides. 

Ligand Type Method Sen (%) Spe (%) Acc (%) MCC AUC 

ATP 

BGSVM 55.6 99.0 97.5 0.595 0.920 

GSVM-RU 37.1 99.4 97.2 0.490 0.919 

SVM-RU 47.2 98.7 96.9 0.498 0.904 

ADP 

BGSVM 58.0 98.6 97.1 0.578 0.929 

GSVM-RU 70.9 94.3 93.5 0.452 0.920 

SVM-RU 44.7 98.9 96.9 0.510 0.909 

AMP 

BGSVM 43.0 99.0 96.7 0.512 0.895 

GSVM-RU 38.4 99.3 96.7 0.503 0.892 

SVM-RU 39.9 98.9 96.5 0.481 0.878 

GDP 

BGSVM 35.1 99.6 97.2 0.514 0.881 

GSVM-RU 26.6 99.8 97.0 0.453 0.871 

SVM-RU 35.1 98.4 96.1 0.384 0.870 

GTP 

BGSVM 56.0 99.6 97.5 0.687 0.913 

GSVM-RU 56.7 99.6 97.6 0.697 0.912 

SVM-RU 53.7 99.2 97.0 0.631 0.907 

 
 To demonstrate the generalization capability of the proposed 
BGSVM, we further compared it with GSVM-RU and SVM-
RU on independent validation datasets. For each of the three 
methods, we trained it on the training dataset for a given ligand 
type and then tested the trained model with the corresponding 
independent validation set as described in Table 1. Table 6 
summarizes the performance comparisons between BGSVM, 
GSVM-RU, and SVM-RU on the independent validation 
datasets for the five types of nucleotides.  

 From Table 6, we can conclude that the generalization 
performance of the proposed BGSVM outperforms that of 
GSVM-RU and SVM-RU with respect to AUC and MCC, 
which are two global metrics for evaluating prediction quality. 
In terms of AUC, the corresponding values of BGSVM on 
ATP, ADP, AMP, GDP, and GTP under independent 
validation tests are 0.920, 0.929, 0.895, 0.881, and 0.913 
respectively, which are 1.6%, 2.0%, 1.7%, 1.1%, and 0.6% 
higher than that of SVM-RU. As to MCC, BGSVM is superior 
to SVM-RU with improvements of 9.7%, 6.8%, 3.1%, 13.0%, 
and 5.6% on ATP, ADP, AMP, GDP, and GTP, respectively. 
Compared with GSVM-RU, the MCC of BGSVM on GTP is 
1.0% lower. However, it still achieves improvements of 
10.5%, 12.6%, 0.9%, and 6.1% on ATP, ADP, AMP, and 
GDP regarding MCC. Moreover, the values of AUC of 
BGSVM on ADP and GDP are both almost 1.0% higher than 
the AUC values yielded by GSVM-RU. 

3.4. Comparison with Existing Predictors 

 To further demonstrate the efficacy of BGSVM, we 
compared the predictor implemented with BGSVM, called 
BGSVM-NUC, to other popular sequence-based protein-
ligand binding site predictors including Rate4Site [13], 
SVMPred [17], NsitePred [17], and TargetS [42]. Table 7 
illustrates the performances of BGSVM-NUC and the above-
mentioned existing predictors on Train-NUC dataset over 
five-fold cross-validation for comparison. 

 First, we compared the overall performances, measured 

by AUC and MCC, of the five protein-nucleotide predictors 

considered in this study. As shown in Table 7, the proposed 

BGSVM-NUC obviously shows the best performance, as it 

offers the highest values of AUC and MCC and consistently 

outperforms the other four predictors for all five types of 

nucleotide ligands. More specifically, we observed that the 

proposed BGSVM-NUC overwhelms Rate4site, SVMPred, 

and NsitePred. For example, BGSVM-NUC achieves 

averaged AUC improvements of approximately 15.4%, 

4.1%, and 3.3% relative to those of Rate4site, SVMPred, and 

NsitePred, respectively, on the five nucleotide training 

datasets. Regarding TargetS, which is the second-best 

performer among the listed predictors, BGSVM-NUC still 

achieves an averaged improvement of approximately 1.0% in 

AUC. In terms of MCC, BGSVM-NUC significantly 

outperforms Rate4site, SVMPred, and NsitePred. For 

example, BGSVM-NUC achieves average improvements of 

approximately 9.7% and 7.9% in MCC over SVMPred and 

NsitePred, respectively. Compared with TargetS, the MCC 

of BGSVM-NUC showed an improvement of approximately 

2.5% on average.   

 We further compared the protein-nucleotide predictors 
based on three other metrics, i.e., Sen, Spe, and Acc. For 
ATP and GDP, BGSVM-NUC consistently performs better 
than or equal to the other four predictors in terms of Sen, 
Spe, and Acc. Regarding ADP, AMP, and GTP, BGSVM-
NUC also provides the best performance on Acc while 
showing comparable or even better performance on Spe 
compared with SVMPred, NsitePred, and TargetS. For 3 out 
of 5 ligands, i.e., ATP, ADP, and GDP, BGSVM-NUC 
performs best in terms of Sen, with the highest values of 
48.4%, 62.1%, and 67.5%, respectively. It has not escaped 
from our notice that Rate4Site performs much better than the 
other 4 predictors with the highest Sen values of 56.2% and 
56.9% for AMP and GTP, respectively. However, the 
corresponding Spe values of Rate4Site for AMP and GTP are 
significantly lower than those of the other 4 predictors. In 
other words, Rate4Site tends to predict too many false 
positives. Together with the fact that the number of negative  
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Table 7. Performance comparisons between BGSVM-NUC, TargetS, NsitePred, SVMPred, and Rate4Site on Train-NUC dataset 

over five-fold cross-validation. 

Ligand Type Predictor Sen (%) Spe (%) Acc (%) MCC AUC 

ATP 

BGSVM-NUC 48.4 99.1 97.0 0.561 0.901 

TargetS a 44.6 99.0 96.7 0.531 0.896 

NsitePred a 44.4 98.2 96.0 0.460 0.861 

SVMPred a 36.1 98.8 96.2 0.433 0.854 

Rate4Site a 44.6 87.0 85.2 0.182 0.749 

ADP 

BGSVM-NUC 62.1 99.1 97.7 0.657 0.924 

TargetS a 58.7 99.0 97.5 0.631 0.918 

NsitePred a 54.4 98.8 97.1 0.572 0.893 

SVMPred a 45.8 99.3 97.3 0.555 0.885 

Rate4Site a 47.2 84.4 83.0 0.161 0.749 

AMP 

BGSVM-NUC 37.3 98.9 96.6 0.449 0.873 

TargetS a 36.8 98.6 96.1 0.418 0.857 

NsitePred a 30.4 98.8 96.2 0.377 0.829 

SVMPred a 20.8 99.6 96.6 0.360 0.820 

Rate4Site a 56.2 79.9 79.0 0.174 0.755 

GDP 

BGSVM-NUC 67.5 99.6 98.3 0.765 0.933 

TargetS a 65.0 99.6 98.1 0.741 0.920 

NsitePred a 64.6 99.1 97.6 0.675 0.910 

SVMPred a 62.3 98.9 97.7 0.655 0.905 

Rate4Site a 51.6 82.3 81.1 0.170 0.733 

GTP 

BGSVM-NUC 47.3 99.6 97.5 0.609 0.872 

TargetS a 44.3 99.6 97.4 0.595 0.863 

NsitePred a 47.3 99.1 96.8 0.562 0.844 

SVMPred a 37.3 99.7 97.0 0.551 0.836 

Rate4Site a 56.9 80.6 79.6 0.180 0.748 

a Data are excerpted from [42]. 

samples is far larger than that of positive samples, Rate4Site 

produces the lowest performances in terms of MCC for all 5 

types of ligands. 

 Table 8 summarizes the comparison between the 

performance of the five considered protein-ligand predictors 

on the independent validation datasets Test-NUC. For four 

out of five ligands, i.e., ATP, ADP, AMP, and GTP, the 

proposed BGSVM-NUC provides the best overall 

performance in terms of MCC and AUC. The MCC values of 

BGSVM-NUC on ATP, ADP, AMP, and GTP reach 0.595, 

0.578, 0.512, and 0.687, which are 6.1%, 6.2%, 0.9%, and 

3.4%, respectively, higher than the corresponding values of 

the second-best predictor, TargetS. Regarding AUC, the 

proposed BGSVM-NUC still shows improvements of 0.4%, 

0.6%, 1.1%, and 0.3% for ATP, ADP, AMP, and GTP, 

respectively, when compared with TargetS. For GDP, we 

found that BGSVM-NUC also achieves a good AUC 

performance that is comparable to those of TargetS, 

NsitePred, and SVMPred. Nevertheless, BGSVM-NUC is 

inferior to TargetS, NsitePred, and SVMPred in terms of 

MCC for GDP. We speculate that the insufficient distribution 

information in the training dataset may account for the 

inferior performance of BGSVM-NUC for GDP. 

CONCLUSIONS 

 In this work, we proposed a new machine-learning 
algorithm, called BGSVM, for addressing the class 
imbalance by boosting multiple granular support vector 
machines. Based on the proposed BGSVM, we implemented 
an effective protein-nucleotide binding site predictor, called 
BGSVM-NUC, which can currently perform binding site 
predictions for five types of nucleotide ligands. The 
experimental results with a training dataset and an 
independent test dataset demonstrated that the proposed 
BGSVM-NUC outperforms other existing sequence-based 
protein-nucleotide binding site predictors. The superior 
performance of our predictor mainly stems from the 
impressive ability of the BGSVM algorithm to deal with 
class imbalance, which is a common phenomenon in protein-
ligand prediction problems.  

 Although our method has provided some improvement 
compared with other sequence-based protein-ligand predictors,  
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Table 8. Performance comparisons of the proposed BGSVM-NUC with other protein-ligand binding sites predictors on 

independent validation datasets of Test-NUC. 

Ligand Type Predictor Sen (%) Spe (%) Acc (%) MCC AUC 

ATP 

BGSVM-NUC 55.6 99.0 97.5 0.595 0.920 

TargetS a 50.4 98.9 97.2 0.534 0.916 

NsitePred b 46.0 98.5 96.7 0.476 0.875 

SVMPred b 36.7 99.1 96.9 0.451 0.868 

Rate4Site b 46.4 86.2 84.9 0.167 0.741 

ADP 

BGSVM-NUC 58.0 98.6 97.1 0.578 0.929 

TargetS a 50.9 98.5 96.8 0.516 0.923 

NsitePred b 47.4 98.7 96.8 0.512 0.893 

SVMPred b 38.8 99.3 97.1 0.500 0.886 

Rate4Site b 52.1 82.3 81.2 0.166 0.735 

AMP 

BGSVM-NUC 43.0 99.0 96.7 0.512 0.895 

TargetS a 44.5 98.7 96.5 0.503 0.884 

NsitePred b 42.3 98.7 96.9 0.501 0.876 

SVMPred b 33.5 99.4 96.7 0.478 0.870 

Rate4Site b 52.0 82.4 81.1 0.175 0.752 

GDP 

BGSVM-NUC 35.1 99.6 97.2 0.514 0.881 

TargetS a 45.9 99.4 97.4 0.571 0.884 

NsitePred b 58.5 98.5 97.0 0.576 0.867 

SVMPred b 51.1 98.8 97.1 0.553 0.855 

Rate4Site b 54.5 79.3 78.1 0.173 0.748 

GTP 

BGSVM-NUC 56.0 99.6 97.5 0.687 0.913 

TargetS a 62.6 98.7 97.0 0.653 0.910 

NsitePred b 60.4 98.8 96.9 0.640 0.909 

SVMPred b 48.5 99.3 96.9 0.602 0.887 

Rate4Site b 53.1 81.7 80.6 0.168 0.745 

a Results are calculated by TargetS [42] models trained on the corresponding datasets of Train-NUC; 
b  Data are excerpted from [17]. 

there is room for further improvement due to two potential 
disadvantages. First, the dimension of feature in this study is 
fairly high, which may cause information redundancy. 
Therefore, reducing the feature dimension may be a 
promising way to further improve the accuracy of prediction. 
Another disadvantage is the relatively long computation time 
of BGSVM-NUC because BGSVM-NUC performs PSI-
BLAST [50], PSIPRED [53], and LIBSVM [55] software in 
a linear manner to extract features and predict protein-
nucleotide binding sites. In future work, we will try to speed 
up the computation by using multiple servers to concurrently 
perform these computations.  

 In addition, the BGSVM model, proposed in this work, is 
specially used to learn from an imbalanced dataset in the 
prediction of protein-binding residues. In the future, we will 
further investigate the ability of our model to other 
prediction problems that involve imbalanced datasets, such 
as protein-protein binding site prediction [61], and 
sumoylation site prediction in proteins [62].  
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